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Lexicographic-Type Extension of Min-Max Logic

Is Not Uniquely Determined

Olga Kosheleva and Vladik Kreinovich
University of Texas at El Paso

500 W. University
El Paso, TX 79968, USA

olgak@utep.edu, vladik@utep.edu

Abstract

Since in a computer, “true” is usually represented as 1 and “false” as
0, it is natural to represent intermediate degrees of confidence by numbers
intermediate between 0 and 1; this is one of the main ideas behind fuzzy
logic – a technique that has led to many useful applications. In many
such applications, the degree of confidence in A&B is estimated as the
minimum of the degrees of confidence corresponding to A and B, and the
degree of confidence in A∨B is estimated as the maximum; for example,
0.5 ∨ 0.3 = 0.5. It is intuitively OK that, e.g., 0.5 ∨ 0.3 < 0.51 and, more
generally, that 0.5 ∨ 0.3 < 0.5 + ε for all ε > 0. However, intuitively, an
additional argument in favor of the statement should increase our degree of
confidence, i.e., we should have 0.5 < 0.5 ∨ 0.3. To capture this intuitive
idea, we need to extend the min-max logic from the interval [0, 1] to a
lexicographic-type order on a larger set. Such extension has been proposed
– and successfully used in applications – for some propositional formulas.
A natural question is: can this construction be uniquely extended to all
“and”-“or” formulas? In this paper, we show that, in general, such an
extension is not unique.

1 Formulation of the Problem

Need for intermediate degrees of belief. In the usual 2-valued logic, every
statement is either true or false. In a computer, “true” is usually represented
as 1, and “false” as 0.

In practice, for many statements, we do not know whether they are true or
false, but we have some degree of confidence that they are true. A reasonable
idea is to describe this degree of confidence by numbers intermediate between 0
(false, absolutely no confidence) and 1 (true, absolute confidence). Using such
degrees of confidence is one of the main idea behind fuzzy logic, a technique that
has been successful in many applications; see, e.g., [5, 8, 9, 10, 11, 12, 15].
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Need for “and”- and “or”-operations. For each statement provided by an
expert, we can ask this expert to also provide his/her degree of confidence in
this statement. However, to make conclusions, we usually need to use several
such statements.

For example, sometimes, the conclusion is true only if both statements A
and B are true, i.e., if a composite statement A&B is true. Sometime, the
conclusion can be derived from each of these statement, so the conclusion is
true if either A is true or B is true, i.e., if a composite statement A∨B is true.
In general, we can have more complex composite statements.

So, in addition to degrees of confidence in individual statements, we also
need to know degrees of confidence in such composite statements. For n basic
statements A1, . . . , An, we can have exponentially many composite statements
– e.g., we have Ai1 & . . . &Aik for each of 2n − (n + 1) non-trivial subsets
{i1, . . . , ik} ⊆ {1, . . . , n}. Even for reasonable-size n like n = 30, this means
billions of possible composite statements. There is no way we can ask the
experts to provide degree of confidence in each of these statements. So, we
need to be able to estimate the degree of confidence in such statements – in
particular, in statements A&B and A ∨ B – based on the known degrees of
confidence a and b in statements A and B. For “and”- and “or”-statements, the
resulting estimates are known as “and”-operations and “or”-operations, or, for
historical reasons, t-norms and t-conorms. In this paper, we will denote these
operations by a& b and a ∨ b.

These operations much satisfy some natural requirements. For example,
since A&B means the same as B &A, it is reasonable to require these two for-
mulas should result in the same estimate, i.e., that we should always have a& b =
b& a. Similarly, the fact that A& (B &C) means the same as (A&B) &C im-
plies that it is reasonable to have a& (b& c) = (a& b) & c, etc.

Our degree of confidence in a stronger statement “A and B” cannot be
larger than our degree of confidence in each individual statement, i.e., we must
have a& b ≤ a and a&, b ≤ b. Similarly, our degree of confidence in a weaker
statement A∨B cannot be smaller than our degree of confidence in each of the
original statements, so we should have a ≤ a ∨ b and b ≤ a ∨ b.

There many other similar natural requirements. There are many different
“and”- and “or”-operations satisfying all these requirements; see, e.g., [5, 8, 9,
10, 11, 12, 15].

Min-max logic. It seems natural to also impose some additional requirements:
e.g., if our degree of confidence in a statement C is larger than (or equal to) our
degrees of confidence in A and in B, then it should also be larger than or equal
to our degree of confidence in a statement “A or B”. In precise terms: if a ≤ c
and b ≤ c, then we should have a ∨ b ≤ c.

For a ≤ b and c = b, the fact that we have a ≤ b and b ≤ b immediately
implies that a ∨ b ≤ b. Since we always have b ≤ a ∨ b, this implies that
a ∨ b = max(a, b), i.e., that we have a max “or”-operation.

Similar, it is reasonable to require that if c ≤ a and c ≤ b, then c ≤ a& b.
For a ≤ b and c = a, since we have a ≤ a and a ≤ b, we thus imply that
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a ≤ a& b. Since we always have a& b ≤ a, this implies that a& b = min(a, b),
i.e., that we have a min “and”-operations.

Need for a lexicographic extension. Formally, in the min-max logic, we
have, e.g., 0.5 ∨ 0.3 = 0.5. However, intuitively, if we have an additional argu-
ment in favor of the statement – even if that additional argument is weaker than
the original one – this should boost our degree of confidence in a statement.

In other words, it is OK that 0.5∨ 0.3 is smaller than 0.6, smaller than 0.51,
smaller than 0.501 – and, in general, smaller than 0.5 + ε for an arbitrary small
ε > 0, but we would like to require that 0.5 < 0.5 ∨ 0.3. So, it is desirable to
extend the set of possible values of degree of confidence from the interval [0, 1]
to some more general ordered set.

A possibility to have values which are greater than 0.5 but smaller than all
larger numbers occurs, e.g., in lexicographic orderings of pairs of non-negative
numbers, when (a1, a2) < (b1, b2) if and only if:

• either a1 < b1

• or a1 = b1 and b1 < b2;

in this case, (0.5, 0) < (0.5, 0.3) but (0.5, 0.3) < (0.5 + ε, 0) for all ε > 0. So, it
is reasonable to call the desired extension lexicographic-type.

For some composite formulas, such an extension was proposed and used in
[1, 2, 3, 4, 14]. This extension was successfully use to deal with uncertainty in
petroleum engineering and in other application areas; see, e.g., [14].

Comment. What we should get is, in effect, a new value which differs from 0.5
by an infinitesimal number – similar to what is done in nonstandard analysis;
see, e.g., [6, 7, 13].

Natural question. A natural question is: how unique is this extension?
Our conclusion is that it is not unique.

2 Our Answer

A natural formalization. Let us first formulate the above question in precise
terms.

We want to consider expressions E of the type a, a ∨ b, a& (b ∨ c), i.e.,
expressions obtained from numbers from the interval [0, 1] by using symbols ∨
and &.

The following natural formalization comes from fact that for most other “or”-
operations, we have a < a ∨ b for all a < 1. The max-operation can be repre-
sented as a limit of such operations. Similarly, for most other “and”-operations,
we have a& b < a for all a > 0. The min-operation can be represented as a
limit of such operations.

So, let us consider a family ∨p of “or”-operations:

• that tend to max(a, b), i.e., for which a ∨p b→ max(a, b) as p→∞, and
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• for which, for each a < 1 and b, we have a < a ∨p b for all sufficiently
large p.

We can have many such families. For example, we can take

a ∨p b = min
(

(ap + bp)
1/p

, 1
)
.

One can easily check that all the elements of this sequence are “or”-operations (t-
conorms), and that the above expression indeed tends to max(a, b) as p increases.

Similarly, let us consider a family &p of “and”-operations that:

• tend to min(a, b), i.e., for which a&pb→ min(a, b) as p→∞, and

• for which, for all a > 0 and b, we have a&p b < a for all sufficiently large p.

We can have many such families. For example, we can take

a&p b =
(
a−k·p + b−k·p

)−1/(k·p)
,

for some k > 0. One can easily check that all the elements of this sequence
are “and”-operations (t-norms), and that the above expression indeed tends to
min(a, b) as p increases.

For each expression and for each p, we can get a value Ep if we interpret ∨
as ∨p and & as &p. For example, for the expression E = 0.3 ∨ (0.5 & 0.4), we

have Ep
def
= 0.3 ∨p (0.5 &p 0.4). In the limit p → ∞, the value Ep tends to the

value of E in the min-max logic.
For two expressions E and E′, we can then say that E < E′ if for all

sufficiently large p, we have Ep < E′p. By the properties of the operations ∨p,
this will guarantee, e.g., that 0.5 < 0.5 ∨ 0.3, and, in general, that a < a ∨ b for
all a < 1 and b.

Now, we can formulate the above question in precise terms.

Question. When a < 1, then for expressions a and a ∨ b, we have a < a ∨ b
no matter what families ∨p and &p we select. In this sense, for these two
expressions, the lexicographic-type extension of min-max logic is unique.

A natural question is whether this is true for all pairs of expressions.

Our answer. Our answer is that there exist pairs of expressions E and E′

for which the order depends on which families ∨p and &p we select: for some
families, we have E < E′, while for others, we have E′ < E.

As an example, we can take the expressions E = (a& a)∨(a& a) and E′ = a
for which Ep = (a&p a) ∨p (a&p a) and E′p = a.

Different orders can be observed already for the above examples of families:
specifically, different orders can be observed for different values k.

When k is very large, then, in comparison with the “or”-operation, we prac-
tically have a&p b ≈ min(a, b). In particular, a&p a ≈ a, and thus, the value
Ep is thus approximately equal to a ∨p a. We know that a < a ∨p a, so in this
case, we have E′p < Ep, and thus, by definition E′ < E.
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On the other hand, when k is very small, then, in effect, the opposite hap-
pens: in comparison with the “and”-operation, we practically have a ∨p b ≈
max(a, b). Thus,

Ep = (a&p a) ∨p (a&p a) ≈ max(a&p a, a&p a) = a&p a.

We know that a&p a < a, so in this case, we have Ep < E′p and thus, E < E′.
Non-uniqueness is proven.
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