
University of Texas at El Paso University of Texas at El Paso 

ScholarWorks@UTEP ScholarWorks@UTEP 

Departmental Technical Reports (CS) Computer Science 

6-2020 

How to Train A-to-B and B-to-A Neural Networks So That the How to Train A-to-B and B-to-A Neural Networks So That the 

Resulting Transformations Are (Almost) Exact Inverses Resulting Transformations Are (Almost) Exact Inverses 

Paravee Maneejuk 
Chiang Mai University, Mparavee@gmail.com 

Torben Peters 
Leibniz University Hannover, peters@ikg.uni-hannover.de 

Claus Brenner 
Leibniz University Hannover, Claus.Brenner@ikg.uni-hannover.de 

Vladik Kreinovich 
The University of Texas at El Paso, vladik@utep.edu 

Follow this and additional works at: https://scholarworks.utep.edu/cs_techrep 

 Part of the Computer Engineering Commons 

Comments: 

Technical Report: UTEP-CS-20-69 

Recommended Citation Recommended Citation 
Maneejuk, Paravee; Peters, Torben; Brenner, Claus; and Kreinovich, Vladik, "How to Train A-to-B and B-to-A 
Neural Networks So That the Resulting Transformations Are (Almost) Exact Inverses" (2020). 
Departmental Technical Reports (CS). 1463. 
https://scholarworks.utep.edu/cs_techrep/1463 

This Article is brought to you for free and open access by the Computer Science at ScholarWorks@UTEP. It has 
been accepted for inclusion in Departmental Technical Reports (CS) by an authorized administrator of 
ScholarWorks@UTEP. For more information, please contact lweber@utep.edu. 

https://scholarworks.utep.edu/
https://scholarworks.utep.edu/cs_techrep
https://scholarworks.utep.edu/computer
https://scholarworks.utep.edu/cs_techrep?utm_source=scholarworks.utep.edu%2Fcs_techrep%2F1463&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/258?utm_source=scholarworks.utep.edu%2Fcs_techrep%2F1463&utm_medium=PDF&utm_campaign=PDFCoverPages
https://scholarworks.utep.edu/cs_techrep/1463?utm_source=scholarworks.utep.edu%2Fcs_techrep%2F1463&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:lweber@utep.edu


How to Train A-to-B and B-to-A Neural
Networks So That the Resulting
Transformations Are (Almost) Exact Inverses

Paravee Maneejuk, Torben Peters, Claus Brenner, and Vladik Kreinovich

Abstract In many practical situations, there exist several representations, each of
which is convenient for some operations, and many data processing algorithms in-
volve transforming back and forth between these representations. Many such trans-
formations are computationally time-consuming when performed exactly. So, taking
into account that input data is usually only 1-10% accurate anyway, it makes sense
to replace time-consuming exact transformations with faster approximate ones. One
of the natural ways to get a fast-computing approximation to a transformation is
to train the corresponding neural network. The problem is that if we train A-to-B
and B-to-A networks separately, the resulting approximate transformations are only
approximately inverse to each other. As a result, each time we transform back and
forth, we add new approximation error – and the accumulated error may become
significant. In this paper, we show how we can avoid this accumulation. Specifi-
cally, we show how to train A-to-B and B-to-A neural networks so that the resulting
transformations are (almost) exact inverses.

1 Formulation of the Problem

Need for A-to-B and B-to-A transformations. In many practical problems, there
are two (or more) different representations of a state, so that:

Paravee Maneejuk
Faculty of Economics, Chiang Mai University, Chiang Mai, Thailand
e-mail: Mparavee@gmail.com

Torben Peters and Claus Brenner
Institute of Cartography and Geoinformatics, Leibniz University of Hannover, Hannover, Germany
e-mail: peters@ikg.uni-hannover.de, Claus.Brenner@ikg.uni-hannover.de

Vladik Kreinovich
Department of Computer Science, University of Texas at El Paso, El Paso, Texas 79968, USA
e-mail: vladik@utep.edu

1



2 Paravee Maneejuk, Torben Peters, Claus Brenner, and Vladik Kreinovich

• some operations are easier to perform in one representation, while
• other operations are easier to perform in a different representation.

A well-known historical case is the use of logarithms in a slide rule. Normally,
a positive real number a is represented by two points at a distance x (or at a dis-
tance proportional to x). In this representation, it is easy to perform additions and
subtractions. However, to perform multiplication or division, it is more convenient
to represent each number x in a logarithmic scale, as the interval of width ln(x). In
this case, e.g., multiplication a,b→ a ·b can be efficiently performed as follow:

• first, we transform both inputs a and b into the logarithmic scale, computing the
values a′ = ln(a) and b′ = ln(b);

• then, we add the results a′ and b′ of this transformation, thus computing

c′ = a′+b′;

• finally, we apply the inverse transformation to the value c′, i.e., find c for which
ln(c) = c′ (this c is, of course, equal to exp(c′).

One can easily see that c = exp(c′) = exp(a′+b′) = exp(a′) · exp(b′) = a ·b, so we
indeed get the desired product.

Computing the ration a/b is similar, the only difference is that instead of adding
a′ and b′, we compute their difference c′ = a′−b′.

Such situations are ubiquitous, let us just name a few cases:

• In fluid mechanics, there are two alternative representations of dynamics: Euler
and Lagrange representations. In the Euler representation, we describe how the
quantities like density and velocity depend on time and on spatial coordinates.
In this representation, when a particle moves, its coordinates change. In the La-
grange approach, we “tag” the moving particles so that when a particle moves, its
coordinates remain the same – but, e.g., the distance between particles changes.

• In quantum physics, we can have the Schroedinger representation, in which the
state of the systems changes, and we can have the Heisenberg representation, in
which the state of the particle remains the same, but the operators corresponding
to physical quantities (such as coordinates or momentum) change with time.

• In optics, sometimes it is more convenient to represent light as particles, and in
other problems, it is more convenient to represent it as a wave.

• In cartography, some ways of representing the Earth surface by a map provide
better description of angles, others better description of areas, etc.

• In signal processing, sometimes it is more convenient to describe how the signal
changes with time, e.g., when we want to compute the largest possible deviation
from the ideal signal. On the other hand, for filtering (and for data processing in
general), it is often more efficient to apply the Fourier transform and thus, use
the corresponding frequency representation.

Need for machine learning. Sometimes, the transformations are straightforward
– e.g., the transformation between different maps of the same area can usually be



How to Train A-to-B and B-to-A Neural Networks 3

described by explicit formulas. However, in many practical situations, the exact im-
plementation of the corresponding transformations can be very time consuming.
A good example of such transformations are transformations between Euler and
Lagrange coordinates: these transformations require solving a complex system of
partial differential equations. This is especially important for time-critical applica-
tions, where we need to finish computations before a deadline – e.g., for predicting
tomorrow’s weather.

In such situations, a natural way to drastically decrease computation time is to
take into account that in practice, the values of the quantities come from measure-
ments and are, thus only known with some reasonable accuracy – usually, around
1-10%. Thus, there is no need to compute the answer with 10 or 13 digits after
the period. It makes sense to replace the original time-consuming practically exact
computations with faster approximate ones, that would provide an answer with the
corresponding accuracy.

An efficient way to come with such an approximation is to use machine learn-
ing. In this approach, several times, we run the original exact model on different
inputs, and then use the corresponding results to train a machine learning algorithm
– e.g., a neural network [2, 3]. This training may take some time, but once we freeze
the weights, neural-network computations become very fast. This idea has been ef-
ficiently applied to many real-life problems, and it indeed allows us to drastically
reduce computation time.

Traditional methodology of using machine learning and its limitations. When
we have two different representations – let us denote them A and B – we need both
A-to-B and B-to-A transformations. In line with the above idea, it is reasonable
to replace both transformations by appropriately trained neural networks. For this
purpose, we start, e.g., with a large number of different states a1, . . . ,an in the A-
representation, and we use the exact A-to-B algorithm to find the corresponding
B-states b1, . . . ,bn. Then:

• we train the A-to-B neural network on patterns (ai,bi) in which ai is the input,
and bi is the desired output, and

• we train the B-to-A neural network on patterns (bi,ai) in which bi is the input,
and ai is the desired output.

The main limitation of this scheme is that a neural network provides only an
approximation to the actual transformation. It is Ok if we apply the neural network
only once: in this case, if we can select the approximations to be more accurate that
the measurement accuracy, the resulting inaccuracy will be negligible in comparison
with the measurement inaccuracy.

However, in many data processing algorithm, we need to constantly switch be-
tween different representations. For example, in signal and image processing, we
often have an iterative algorithm that switches all the time between the time and
frequency domains. In this case, if we replace each exact transformation with an
approximate one, every time we apply a transformation, we add an extra approx-
imation error. When we apply A-to-B and B-to-A transformations many time, the
resulting errors accumulate, and we may end up with a very inaccurate result.



4 Paravee Maneejuk, Torben Peters, Claus Brenner, and Vladik Kreinovich

What we need and what we do in this paper. To avoid the above situations, it is
desirable to make sure that the corresponding A-to-B and B-to-A transformations
are (almost) exactly inverses: if we first apply the A-to-B neural network to some
input state a and apply the B-to-A neural network to the resulting state b, we should
get the state a back.

The need for this inversion is especially important in economic and financial ap-
plications. In such applications, A-to-B and B-to-A transformations may describe
options from classes A and B that customers perceive as equivalent ones. In this
case, if a trader follows a neural network computations, and as a result of applying
first A-to-B and then B-to-A transformations, get a state a′ which should be equiv-
alent to a but is actually slightly different – e.g., slightly better than a, we get an
undesirable arbitrage phenomenon, when a trader can earn huge amounts of money
by exploiting this seemingly minor difference.

In this paper, we describe how we can train A-to-B and B-to-A neural networks
so that the resulting transformations are (almost) exact inverses.

Comment. An alternative solution is described in [1, 4], where the authors propose
to restrict ourselves by invertible neural networks, i.e. networks in which each layer
can be inverted. If this is how we train the A-to-B network, then, by simply invert-
ing each layer, we will indeed get a B-to-A neural network for which the resulting
transformations are (almost) exact inverses. However, the restriction to invertible
neural networks may make the training of a neural network less efficient – e.g., less
accurate or taking more computation time, since the current successes of neural net-
works are based on non-invertible neural networks. With this possibility in mind,
we believe that it is better not to restrict the type of neural networks.

2 Our Proposal

First stage is similar. On the first stage of our proposal, we train the A-to-B network
the same way as usual. Namely:

• we start with a large number of different states a1, . . . ,an in the A-representation,
• we use the exact A-to-B algorithm to find the corresponding B-states b1, . . . ,bn,

and then
• we train the A-to-B neural network on patterns (ai,bi) in which ai is the input

and bi is the desired output.

Second stage is different. On the second stage, we train the B-to-A network. The
main difference from the usual approach is that, to train this network, in addition to
the sample (bi,ai) obtained on the first two sub-stages of the first stage, we also use
other patterns. To be precise, here is what we suggest:

• Once the A-to-B network is trained, we generate more examples of A-states

an+1, . . . ,aN (N� n).



How to Train A-to-B and B-to-A Neural Networks 5

• To each of these new examples a j, we apply the A-to-B network and record the
corresponding B-state b j. Since the A-to-B network is much faster than the exact
A-to-B transformation that we approximating, during the same time as the second
sub-stage of the first stage, we can process much more examples (N� n).

• Finally, to train the B-to-A network, we use both the patterns (bi,ai) generated
on the first stage and the newly generated patterns (b j,a j).

Why it works. In the original method, the A-to-B and B-to-A networks are exact
inverses only on n patterns (ai,bi). On all other inputs a 6= ai, if we first apply the
A-to-B network and then the B-to-A network, we, in general, do not get the same
original state back. To be more precise, the closer a to one of ai, the closer the result
of the back-and-forth transformation to a. The larger n, the denser are the states ai in
the class of all possible A-states and thus, in general, the smaller the distance from a
to the nearest point ai and the closer the back-and-forth result to the original state a.

In our proposed approach, the A-to-B and B-to-A networks are exact inverses on
N� n patterns (a j,b j). Since N� n, the new states a j are placed much denser in
the class of all possible A-states. Thus, in general, the distance from an A-state a
to the nearest new state a j is much smaller that the distance from a to the nearest
original state ai. Thus, for the newly trained networks, for a generic A-state a, the
result of applying the back-and-forth to a is mich closer to the original state a than
for the original neural network – which is exactly what we wanted.

Comment. In our description, we started with the A-to-B transformation. Alterna-
tively, we could start with the B-to-A transformation and then apply the new idea
to the A-to-B transformation. Which transformation to start with depends on the
relative computational complexity of the original exact A-to-B and B-to-A transfor-
mations: we should start with the one which is faster:

• if, in general, the exact A-to-B transformation is faster, we start with the A-to-B
transformation (as in the above description);

• on the other hand, if, in general, the exact B-to-A transformation is faster, we
should start with the B-to-A transformation on the first stage, and only use the
A-to-B transformation on the second stage.

3 What If We Have More Than Two Different Representations?

Formulation of the problem. In some practical situations, we have more than two
different representations A(1), . . . ,A(K), K > 2. In such situations, we need to be
able to perform a transformation between each pair, so we need transformations
A(k)→ A(k′) for each pair k 6= k′.

How this problem is solved now.

• We start with a large number of different states a(1)1 , . . . ,a(1)n , e.g., in the
A(1)-representation.



6 Paravee Maneejuk, Torben Peters, Claus Brenner, and Vladik Kreinovich

• For each of these states a(1)i and for each representation k > 1, we use the exact
A(1)-to-A(k) algorithm to find the corresponding A(k)-states a(k)1 , . . . ,a(k)n .

• Then, for each pair k 6= k′, we train the A(k)-to-A(k′) neural network on patterns(
a(k)i ,a(k

′)
i

)
, i = 1, . . . ,n.

This process has the same limitation and in the case of two representations (K = 2):
if we apply several neural networks and get back to the same representation that we
started with, the resulting state may be different. How can we make this result closer
to the original stage?

Proposed new algorithm: first stage. Similar to the case K = 2, the first stage of
the algorithm is similar to what we do in the existing scheme:

• We start with a large number of different states a(1)1 , . . . ,a(1)n , e.g., in the
A(1)-representation.

• For each of these states a(1)i and for each representation k > 1, use the exact
A(1)-to-A(k) algorithm to find the corresponding A(k)-states a(k)1 , . . . ,a(k)n .

• Then, for each k > 1, we train the A(1)-to-A(k) neural network on patterns(
a(1)i ,a(k)i

)
, i = 1, . . . ,n.

Proposed new algorithm: second stage. On the second stage, we do the following:

• We generate more examples of A(1)-states a(1)n+1, . . . ,a
(1)
N (N� n).

• To each of these new examples a(1)j , for each k > 1, we apply the A(1)-to-A(k) net-

work and record the corresponding A(k)-states a(k)j . Since the A(1)-to-A(k) neural
network is much faster than the exact A(1)-to-A(k) transformation that we approx-
imating, during the same time as the second sub-stage of the first stage, we can
process much more examples N� n.

• Finally, for all k > 1 and k′ 6= k, to train the A(k)-to-A(k′) network, we use both the
patterns

(
a(k)i ,a(k

′)
i

)
generated on the first stage and the newly generated patterns(

a(k)j ,a(k
′)

j

)
.

Acknowledgments

The first author is grateful for the financial support of the Center of Excellence in
Econometrics, Chiang Mai University, Thailand.

This work was also supported by the German Research Foundation (DFG) as
a part of the Research Training Group i.c.sens (grant GRK2159), by the Institutes
of Cartography and Geoinformatics and of Geodesy of the Leibniz University of



How to Train A-to-B and B-to-A Neural Networks 7

Hannover, and the US National Science Foundation grants 1623190 (A Model of
Change for Preparing a New Generation for Professional Practice in Computer Sci-
ence) and HRD-1242122 (Cyber-ShARE Center of Excellence).

This paper was written when V. Kreinovich was visiting the Leibniz University
of Hannover.

References

1. L. Ardizzone, J. Kruse, S. Wirkert, D. Rahner, E. W. Pellegrini, R. S. Klessen, L. Maier-Hein,
C. Rother, and U. Köthe, “Analyzing Inverse Problems with Invertible Neural Networks”, Pro-
ceedings of the Seventh International Conference on Learning Representations ICLR’2019,
New Orleans, Louisiana, May 6–9, 2019.

2. C. M. Bishop, Pattern Recognition and Machine Learning, Springer, New York, 2006.
3. I. Goodfellow, Y. Bengio, and A. Courville, Deep Learning, MIT Press, Cambridge, Mas-

sachusetts, 2016.
4. J.-H. Jacobsen, A. Smeulders, and E. Oyallon, “i-RevNet: deep invertible networks”, Proceed-

ings of the Sixth International Conference on Learning Representations ICLR’2018, Vancouver,
Canada, April 30 – May 3, 2018.


	How to Train A-to-B and B-to-A Neural Networks So That the Resulting Transformations Are (Almost) Exact Inverses
	Recommended Citation

	tmp.1594068989.pdf.YSOYO

