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Why LASSO, Ridge Regression, and EN:
Explanation Based on Soft Computing

Woraphon Yamaka, Hamza Alkhatib, Ingo Neumann, and Vladik Kreinovich

Abstract In many practical situations, observations and measurement results are
consistent with many different models – i.e., the corresponding problem is ill-posed.
In such situations, a reasonable idea is to take into account that the values of the
corresponding parameters should not be too large; this idea is known as regular-
ization. Several different regularization techniques have been proposed; empirically
the most successful are LASSO method, when we bound the sum of absolute values
of the parameters, ridge regression method, when we bound the sum of the squares,
and a EN method in which these two approaches are combined. In this paper, we
explain the empirical success of these methods by showing that these methods can
be naturally derived from soft computing ideas.

1 Formulation of the Problem

Need for regularization. In practice, in addition to measurement results, we often
use imprecise expert knowledge.

For example, physicists usually believe that when the value of a physical quantity
x is small, we expand the dependence y = f (x) of some other quantity y on x in
Taylor series and ignore quadratic and higher order terms in this expansion; see, e.g.,
[3, 12]. The usual argument is that when x is small, its square x2 is so much smaller
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than x that it can safely be ignored. This is indeed true: if x = 10% = 0.1, then
x2 = 0.01� 0.1; if x = 1% = 0,01, then we can say that x2 = 0.0001� x = 0.01
with even higher confidence.

However, from the purely mathematical viewpoint, this argument is not fully
convincing: indeed, the quadratic term in the Taylor expansion is not x2, but a2 · x2

for some coefficient a2. From the purely mathematical viewpoint, this coefficient a2
can be huge – in which case the product a2 · x2 will also be big, and we will not be
able to ignore it. From the physicist’s viewpoint, however, this argument is valid,
since physicists usually assume that the coefficients cannot be too large, they must
be reasonably small.

This imprecise additional assumption underlies many successes of physics. It can
also be used as a supplement to measurements when we try to estimate the values of
the physical quantities. This is common sense. If, after applying some mathematical
techniques, we get too large values of some parameters, this usually means that
something is not right either with our method or with some measurement results –
they may be outliers. In simple cases, it is clear: if we have a record of temperature
in some area, and we see 17, 18, 19, 18, 17, and then suddenly 42 degrees, we should
get very suspicious – especially if the next day, we again have the high of 19.

Physicists’ intuition is great, but we cannot always rely on this intuition: there
are many problems that need solving, and it is not realistic to expect to have a
skilled physicist for each such problem. To deal with situations when a professional
physicist is not available, we need to have a precise description of what we mean
when we say that the coefficients a0, . . . ,an describing a model must be reasonably
small. Such descriptions are known as regularization; see, e.g., [15].

Which regularizations are currently used. Out of many possible regularizations,
the following three techniques have been most empirically successful:

• LASSO technique (short of Least Absolute Shrinkage and Selection Operator),

when we limit the sum of the absolute values
n
∑

i=0
|ai|; see, e.g., [13];

• ridge regression method, in which we limit the sum of the squares
n
∑

i=0
a2

i ; see,

e.g., [4, 14]; and
• the Elastic Net (EN) method, in which we limit a linear combination of the above

two sums; see, e.g., [5, 17].

Why. In this paper, we show that a natural formalization of commonsense intuition
indeed leads to these three regularization techniques.

2 How Can We Describe Imprecise Expert Knowledge: A Brief
Reminder

Need for degrees of confidence. In contrast to precise statements like “x is larger
than 5” – which are either true or false – imprecise statements like “x is reasonably
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small” are not well-defined. For some values x, for example, for x = 0.0001, the
expert is absolutely sure that x is small; for other values like x = 107, the expert is
usually absolutely sure that this value is not reasonably small. However, for inter-
mediate values x, the expert is usually not 100% sure whether this value is indeed
reasonably small – he or she is only sure to some degree.

It is therefore reasonable to ask the expert to assign, to each value x, a degree
µ(x) to which this expert believes that x is reasonably small. We can use different
scales for such degrees. Since in the computer, “absolutely true” is usually described
as 1, and “absolutely false” as 0, it is convenient to use a scale from 0 to 1 for such
degrees. This assignment is one of the main ideas behind fuzzy logic – a technique
specifically developed to deal with such imprecision; see, e.g., [2, 6, 7, 8, 10, 11, 16].

This way, we can assign, to each imprecise statement, a function µ(x) that de-
scribes to what degree this statement is satisfied for each value x. This function is
known as a membership function or a fuzzy set.

Need for “and”- and “or”-operations. Often, experts make complex statements:
e.g., they may say that x is reasonably small, but not very small. This statement is
obtained from the basic statements “x is reasonably small” and “x is very small” by
applying connectives “not” and “but” (which here means the same as “and”).

In general, we can use connectives “and”, “or”, and “not” to combine elemen-
tary statements into a composite one. Since experts may make such statements, it is
desirable to estimate not only the expert’s degrees of confidence in elementary state-
ments, but also the expert’s degrees of confidence in different combined statements.
An ideal solution would be to simply ask the expert to provide such an estimate for
all possible combinations, but this is not realistic: e.g., even if we simply consider
possible “and”-combinations of some of n statements, we have 2n− 1− n possible
combinations (as many as there are subsets of the set {1, . . . ,n} (2n) with the excep-
tion of an empty set and n one-element sets). For n = 30, we have billions of such
combinations – there is no way to ask that many questions to an expert.

Since we cannot directly ask the expert his/her degree of confidence in each
combination, we therefore need to be able to estimate the degree of confidence in
a complex statement based on whatever information we have – i.e., based on the
expert’s degree of confidence in each elementary statement. This means, in particu-
lar, that we need to estimate the expert’s degree of confidence in an “and”-statement
A&B based on the known expert’s degrees of confidence x and y in each of the two
statements A and B. We will denote this estimate by f&(x,y). The operation that
inputs the pair (x,y) and returns f&(x,y) is known as an “and”-operation or, for
historical reasons, a t-norm.

Similarly, a function that maps the pair (x,y) into an estimate for the expert’s de-
gree of confidence in A∨B is denoted by f∨(x,y) and is known as an “or”-operation
or a t-conorm.

These operations must satisfy several natural requirements. For example, since
A&B means the same as B&A, it is reasonable to require that the estimates for these
two statements will be the same, i.e., that the “and”-operation must be commutative:
f&(x,y) = f&(y,x). Similarly, since A&(B&C) means the same as (A&B)&C, the
“and”-operation must be associative. Similarly, the “or”-operation must be commu-
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tative and associative. Also, both operations should be monotonic is each of the
variables, etc.

Need for Strictly Archimedean operations. With all these requirements, there are
many different “and”- and “or”-operations. In particular, for each strictly increasing
functions f (x), the operation f−1( f (x) · f (y)) is an “and”-operation. Such “and”-
operations are known as strictly Archimedean.

In this paper, we will take into account a result from [9] that for every “and”-
operation f&(a,b) and for every ε > 0, there exists a strictly Archimedean “and”-
operation whose value is ε-close to f&(x,y) for all x and y:

| f&(x,y)− f−1( f (x) · f (y))| ≤ ε.

From the practical viewpoint, very small differences in degree of confidence can be
ignored. Thus, from the practical viewpoint, we can always assume that the “and”-
operation is strictly Archimedean.

3 Let Us Apply Uncertainty Techniques to Our Problem: Why
LASSO and Ridge Regression

General analysis of the problem. The main idea behind regularization is that a
tuple a = (a0, . . . ,an) is accepted if the absolute values |ai| of all the coefficients
are reasonably small. In other words, the value |a0| must be reasonably small and
the value |a1| must be reasonably small, etc. We must select tuples a for which our
degree of confidence µ0(a) in this complex statement should be sufficiently large,
i.e, larger than a certain threshold d0.

According to the above general explanation, to estimate the degree of confi-
dence µ0(a) in our complex statement, we need to apply the corresponding “and”-
operation f&(x,y) to the degrees to which each |ai| is sufficiently small. These
degrees, by definition of the membership function, can be obtained by applying
the membership function µ(x) corresponding to “sufficiently small” to the val-
ues |ai|. In other words, each of these degrees ie equal to µ(|ai|). Thus, the de-
gree of confidence that the above complex statement is true is equal to µ0(a) =
f&(µ(|a0|), . . . ,µ(|an|)). In these terms, the tuple of coefficient a = (a0, . . . ,an) is
accepted if

µ0(a) = f&(µ(|a0|), . . . ,µ(|an|))≥ d0. (1)

Clearly, the larger the value x, the smaller the degree of confidence that this value
is reasonably small. Thus, the membership function µ(x) that corresponds to “rea-
sonably small” is a decreasing function of x.

We have agreed to assume that the “and”-operation is strictly Archimedean, i.e.,
that f&(x,y) = f−1( f (x) · f (y)) for some strictly increasing function f (x). Thus, the
condition (1) takes the form
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µ0(a) = f−1( f (µ(|a0|) · . . . · f (µ(|an|))≥ d0.

By applying the increasing function f (x) to both sides of this inequality, we get an
equivalent inequality

F0(a) = F(|a0|) · . . . ·F(|an|)≥ D0, (2)

where we denoted F0(a)
def
= f (µ0(a)), F(x) def

= f (µ(x)) and D0
def
= f (d0).

Since the function f (x) is increasing and µ(x) is decreasing, the composition
F(x) = f (µ(x)) of these two functions is a decreasing function of x.

To further analyze this situation, we need to make some additional assumptions
reflecting commonsense. In this paper, we will describe two such natural assump-
tions, and we will show that they lead, correspondingly, to LASSO and to the ridge
regression.

Why LASSO. A reasonable idea is that if x and y are reasonably small, then their
sum x+ y is also reasonable small. Thus, it is reasonable to conclude that for the
membership function µ(x) that corresponds to “reasonable small”, the degree to
which x+ y is reasonably small is equal to the degree that x is reasonably small and
y is reasonably small, i.e., that

µ(x+ y) = f&(µ(x),µ(y)). (3)

What we can deduce from this idea? We have assumed that the “and”-operation
is strictly Archimedean, so the equality (3) has the form

µ(x+ y) = f−1( f (µ(x)) · f (µ(y)).

By applying the function f (x) to both sides of this equality, we conclude that
f (µ(x+ y)) = f (µ(x)) · f (µ(y)), i.e., that F(x+ y) = F(x) ·F(y). It is known (see,
e.g., [1]) that every decreasing solution to this functional equation has the form
F(x) = exp(−k · x) for some k > 0. Thus, the inequality (2) takes the form

F0(a) = exp(−k · |a0|) · . . . · exp(−k · |an|)≥ D0,

i.e., equivalently, the form

F0(a) = exp

(
−k ·

n

∑
i=0
|ai|

)
≥ D0.

By taking the logarithm of both sides and dividing both sides of the resulting in-
equality by −k, we get an equivalent inequality

|a0|+ . . .+ |an| ≤ c0,
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where we denoted c0
def
= − ln(D0)

k
. This is exactly the LASSO approach, so we in-

deed justified the use of LASSO regularization.

Why ridge regression. Another reasonable idea isthat if all the coordinates of a
point are reasonably small, then the distance from this point to the origin of the co-
ordinate system is also small. In the 2-D case, the distance between the point with
coordinates (x,y) and the origin (0,0) of the coordinate system is equal to

√
x2 + y2.

Thus, we conclude that if x and y are reasonably small, then the value
√

x2 + y2 is
also reasonably small. So, it is reasonable to conclude that for the membership func-
tion µ(x) that corresponds to “reasonable small”, the degree to which

√
x2 + y2 is

reasonably small is equal to the degree that x is reasonably small and y is reasonably
small, i.e., that

µ

(√
x2 + y2

)
= f&(µ(x),µ(y)). (4)

What we can deduce from this idea? We have assumed that the “and”-operation
is strictly Archimedean, so the equality (4) has the form

µ

(√
x2 + y2

)
= f−1( f (µ(x)) · f (µ(y)).

By applying the function f (x) to both sides of this equality, we conclude that
f
(

µ

(√
x2 + y2

))
= f (µ(x)) · f (µ(y)), i.e., that

F
(√

x2 + y2
)
= F(x) ·F(y).

Thus, for an auxiliary function G(x) def
= F(

√
x) for which F(x) = G(x2), we get

G(x2 +y2) = G(x2) ·G(y2). This is true for all possible non-negative values x and y.
Every non-negative number X can be represented as a square: namely, as X = x2 for
x =
√

X . Thus, for all possible non-negative numbers X and Y , we have G(X +Y ) =
G(X) ·G(Y ). As we have mentioned in our derivation of LASSO, for a monotonic
function G(X), this implies that G(X) = exp(−k · X) for some k > 0. Thus, we
conclude that F(x) = G(x2) = exp(−k · x2).

So, the inequality (2) takes the form

F0(a) = exp(−k ·a2
0) · . . . · exp(−k ·a2

n)≥ D0,

or, equivalently,

F0(a) = exp

(
−k ·

n

∑
i=0

a2
i

)
≥ D0.

By taking the logarithm of both sides and dividing both sides of the resulting in-
equality by −k, we get an equivalent inequality

a2
0 + . . .+a2

n ≤ c0,



Why LASSO, Ridge Regression, and EN: Explanation Based on Soft Computing 7

where we denoted c0
def
= − ln(D0)

k
. This is exactly the ridge regression approach, so

we indeed justified the use of ridge regression.

4 Why EN

Idea. In the previous section, we considered the case when we have a single expert.
In practice, we often have several different experts corresponding to different areas
of expertise. Each expert can dismiss some of the possible models since they are
not realistic according to his or her area of expertise. It is therefore reasonable to
conclude that a tuple a = (a0, . . . ,an) of possible values of parameters is reasonable
if all the experts consider it reasonable.

Let us formalize and explore this idea. Let E denote the number of experts, and let
µ j(a) ( j = 1, . . . ,E) denote the degree to which the tuple a is reasonable according
to the j-th expert. The overall degree that all the experts consider this tuple to be
reasonable is thus equal to f&(µ1(a), . . . ,µE(a)). So, we accept this tuple if this
overall degree is greater than or equal to some threshold d0:

f&(µ1(a), . . . ,µE(a))≥ d0.

For the strictly Archimedean “and”-operation, this inequality takes the form

f−1( f (µ1(a)) · . . . · f (µE(a))≥ d0.

By applying the function f (x) to both sides, we get an equivalent inequality

f (µ1(a)) · . . . · f (µE(a))≥ D0, i.e., F1(a) · . . . ·FE(a)≥ D0, where D0
def
= f (d0).

From the previous section, we know that for each expert j, the function Fj(a) =

f (µ j(a)) takes either the form Fj(a) = exp
(
−k j ·

n
∑

i=0
|ai|
)

or the form Fj(a) =

exp
(
−k j ·

n
∑

i=0
a2

i

)
. By grouping together experts with these types of functions, we

conclude that the acceptance criterion takes the form(
∏
j∈E1

exp

(
−k j ·

n

∑
i=0
|ai|

))
·

(
∏
j∈E2

exp

(
−k j ·

n

∑
i=0

a2
i

))
≥ D0,

where E1 is the set of all experts whose functions Fj(a) take the LASSO form and
E2 is the set of all experts whose functions Fj(a) take the ridge regression form. The
above inequality can be represented in the equivalent form

exp

(
−K1 ·

n

∑
i=0
|ai|−K2 ·

n

∑
i=0

a2
i

)
≥ D0,
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where K1
def
= ∑

j∈E1

k j and K2
def
= ∑

j∈E2

k j.

By taking logarithms of both sides and dividing the resulting inequality by −K1,
we get an equivalent inequality

n

∑
i=0
|ai|+ c ·

n

∑
i=1

a2
i ≤ c0,

where c def
= K2/K1 and c0

def
= − ln(D0)

K1
. This is exactly EN approach – thus EN reg-

ularization is also justified.
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