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Abstract

In many practical situations, measurements are characterized by in-
terval uncertainty – namely, based on each measurement result, the only
information that we have about the actual value of the measured quan-
tity is that this value belongs to some interval. If several such intervals
– corresponding to measuring the same quantity – have an empty inter-
section, this means that at least one of the corresponding measurement
results is an outlier, caused by a malfunction of the measuring instrument.
From the purely mathematical viewpoint, if the intersection is non-empty,
there is no reason to be suspicious, but from the practical viewpoint, if
the intersection is too narrow – i.e., almost empty – then we should also
be suspicious. To be on the safe side, it is desirable to take the second
measurement into account only if we are sufficiently sure that this mea-
surement is not an outlier. In this paper, we describe a natural way to
formalize this idea.

1 Formulation of the Problem

Usually, we have duplicate measurement results. Measurement are never
100% accurate and never 100% reliable. A natural way to increase the accu-
racy and reliability of our information is to perform additional measurements –
whether they are measurements of the same quantity or measurements of related
quantities, based on which we can estimate the value of the desired quantity.
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Which measurement results are outliers: an important problem. The
fact that measurement are not 100% reliable means that sometimes measuring
instrument malfunction – e.g., get stuck in the previously measured value. If
we view such a measurement result as reflecting the true value of the measured
quantity, we will get a false impression – and we may make bad decision based
on this impression. For example, if the temperature in the chemical reactor
starts rising above the optimal level, we need to cool it down to avoid it getting
into an ineffective regime or even blowing up. However, if the temperature
sensor is stuck in the previously measured (normal) value, we will not notice
this potential dangerous development. Similarly, if a distance-measuring sensor
in a self-driving vehicle gets stuck in the previous value of the distance from the
vehicle to a nearby wall, this malfunction may lead to the vehicle hitting this
wall.

In all such cases, it is desirable to decide whether all the measurement results
are correct or whether some of them are suspicious – possibly outliers, and if
there is a suspicion, which measurement results should we throw away and which
retain.

What we do in this paper. In this paper, we analyze this problem in the
simplest possible case: when:

• we have only one quantity of interest, i.e., our problem is 1-dimensional,
and

• all we know about each of the corresponding measurement errors is the
upper bound; in this case, if the measurement result is x̃, and the upper

bound on the measurement error ∆x
def
= x̃−x (where x is the actual value)

is ∆, then all we know about the actual value x is that it is located in the
interval [x̃−∆, x̃+ ∆].

In short, in this paper, we deal with the 1-D interval case, in which several
measurements of the same quantity resulted in several intervals [xi, xi] (i =
1, . . . , n) supposedly containing the actual value of the desired quantity.

We also discuss what to do in the general multi-D case.

2 How This Problem Solved Now: Description
and Limitations

How this problem is solved now: description. The usual approach is
that if the intervals [x1, x1], . . . , [xn, xn] do not have a common point – i.e.,
if their intersection is empty – then clearly there is a contradiction, some of
these intervals are outliers. In this case, we can also decide which intervals are
outliers.

In principle, if we have a set of n intervals whose intersection is empty, we
could select any subset whose intersection is not empty, and call other intervals
outlier. There are usually many such subsets, so it is reasonable to select a subset

2



for which the probability that we have made the right choice is the largest. To
estimate the corresponding probabilities, we can have into account that we do
not have any a priori reason to be suspicious of any of the intervals. Because
of this fact, that each intervals has the same prior probability p0 of being an
outlier. Intervals are independent, so the probability that k intervals are outliers
is equal to pk0 . To maximize this value, we need to minimize the number k of
outliers – i.e., equivalently, maximize the number of intervals which are declared
correct. Thus, out of all subsets with a non-empty intersection, it is reasonable
to select a subset that has the largest possible number of intervals.

Comment. This natural idea does not always lead to a unique solution. For
example, if we have three intervals [−3,−1], [−2, 2], and [1, 3] with an empty
intersection, we can select two different two-element subsets:

• we could select [−3,−1] and [−2, 2],

• or we could select [−2, 2] and [1, 3].

This non-uniqueness is not a flaw of a method, it is inherent in the problem.
Indeed, the original problem is symmetric with respect to changing the sign, and
so, there is no way to select one of the above two solutions without breaking
this symmetry.

However, there are serious limitations to this approach.

How this problem is solved now: limitations. Suppose that we make two
measurements, both with accuracy ∆ = 1. As a result of the first measurement,
we got the value 0, which means that the actual value of the measured quantity
is somewhere in the interval [−1, 1]. Let us consider several possible results of
the second measurement.

First, a normal case: the second measurement results in a vale x̃ = 0.5. In
this case, based on the second measurement, we can conclude that the actual
value is in the interval [0.5 − 1, 0.5 + 1] = [0.5, 1.5]. The actual value should
therefore belong to the intersection of the two intervals

[−1, 1] ∩ [0.5, 1.5] = [0.5, 1].

Second, let us consider a clearly inconsistent case, when the second measure-
ment resulted in the value x̃ = 2.1. In this case, based on this measurement re-
sult, we should conclude that x belongs to the interval [2.1−1, 2.1+1] = [1.1, 3.1],
but this new interval does not have any common points with the original inter-
val [−1, 1]:

[−1, 1] ∩ [1.1, 3.1] = ∅.

And finally, the case that makes the current approach suspicious: suppose
that in the second measurement, we got x̃ = 2. In this case, we conclude
that x belongs to the interval [2 − 1, 2 + 1] = [1, 3], and thus, x belongs to
the intersection [−1, 1] ∩ [1, 3] = {1}. So, we get an exact value x = 1. From
the purely mathematical viewpoint, there is nothing wrong here, but from the
physical viewpoint, this does not make sense: we started with two not very
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accurate measurements, with accuracy ±1 comparable with the actual values,
and we magically got a very precise result???

What if the measurement result is not 2, but a smaller but close numbers,
e.g., x̃ = 1.9. In this case, we get the intersection

[−1, 1] ∩ [1.9− 1, 1.9 + 1] = [−1, 1] ∩ [0.9, 2.9] = [0.9, 1].

Again, mathematically very possible, but from the physical viewpoint, we per-
form two lousy-quality measurements and suddenly got a ten times better ac-
curacy? Such cases are very suspicious, many physicists and engineers would
strongly suggest that one of the measurements was an outlier – probably caused
by a mismatch.

Resulting problem. How can we formalize this idea? How can we estimate
the probability that the measurement results are inconsistent – and dismiss one
of them if this probability exceeds a certain threshold?

What we do in this paper. In this paper, we provide a possible solution to
this problem.

3 Let Us Estimate the Probability that Mea-
surements Are Consistent

Setting. Let us first consider the simplest case when we only have two mea-
surements. We know that the first measurement, with measurement result x̃
and accuracy ∆, is legitimate. We are interested in the probability that the
second measurement, with measurement result x̃′ and accuracy ∆′, is also legit-
imate. Equivalently, we may want to estimate the probability that the second
measurement is an outlier – which is 1 minus the first probability. We would
then accept the second measurement is legitimate if we are sufficiently sure that
it is legitimate – i.e., if the probability of its being legitimate exceeds a given
threshold t0.

In this simplest case, we will be able to find an analytical formula for this
probability; in more complex cases, we do not have an explicit formula, but
we can use the same methodology and estimate the probability by solving the
corresponding probabilistic problem – which can be solved, e.g., by Monte-Carlo
techniques.

To make computations easier (and thus clearer), we first consider a realistic
case when both measurements have the same accuracy ∆′ = ∆. After that, we
extend our analysis to the cases when the second measurement is more accurate
(∆′ < ∆) and when the first measurement is more accurate (∆ < ∆′).

It is reasonable to use Bayes formula. We have two hypotheses:

• a hypothesis that the second measurement is legitimate; we will denote
this hypothesis by L: and
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• a hypothesis that the second measurement is an outlier which is inconsis-
tent with the first measurement; let us denote this hypothesis by I.

A priori, before we perform any measurements, we know, from the previous expe-
rience, which portion of measurements are outliers. In many practical problems,
this prior probability p0 is about 5-10%; in many other cases, this portion is
much lower. So, before we actually perform the second measurement, we have
prior probabilities of both hypotheses: P0(I) = p0 and P0(L) = 1− p0.

We want to describe how the probabilities of different hypotheses changes
when we learn the measurement result E, i.e., in statistical terms, what are
the resulting posterior probabilities P (I) and P (L). In statistics, this change is
described by the following Bayes formula (see, e.g., [4]:

P (L) =
P (E |L) · P0(L)

P (E |L) · P0(L) + P (E | I) · P0(I)
=

P (E |L) · (1− p0)

P (E |L) · (1− p0) + P (E | I) · p0
, (1)

where P (E |H) denotes the probability of observing the result E under hypoth-
esis H.

To use this formula, we need to select an event E and to estimate the prob-
abilities P (E |L) and P (E | I).

Estimating P (E | I). There may be some hope of estimating P (E |L) be-
cause we have some information about possible legitimate measurement results.
However, when we say that something is an outlier, we do not introduce any
information that can be used for such an estimation. Thus, there is no place to
start when estimating the conditional probability P (E | I); all we know is that
this probability – as well as any other probability – is somewhere between 0
and 1.

We want to consider the second measurement legitimate if we are sure that
the probability P (L) is greater than or equal the threshold t0, i.e., if P (L) ≥ t0
for all possible values of the conditional probability P (E | I). For this inequality
to be always satisfied, it is sufficient to make sure that this inequality is satisfied
for the smallest possible value P (L). From the formula (1), one can see that
P (L) decreasing with P (E | I). Thus, the smallest possible value of P (L) is
attained when the conditional probability P (E | I) attains its largest possible
value 1, i.e., when

P (E |L) · (1− p0)

P (E |L) · (1− p0) + p0
≥ t0.

Multiplying both sides by the denominator of the left-hand side, we get an
equivalent inequality

P (E |L) · (1− p0) ≥ t0 · P (E |L) · (1− p0) + t0 · p0.

Moving all the terms containing P (E |L) to the left-hand sides, we get

P (E |L) · (1− p0) · (1− t0) ≥ p0 · t0,
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i.e.,

P (E |L) ≥ c0
def
=

p0 · t0
(1− p0) · (1− t0)

. (2)

For example, if the frequency p0 of outliers in 5%, and we want to achieve at
least 80% confidence t0, then we should use c0 ≈ 0.21.

To use this inequality, we need to be able to estimate P (E |L). Let us show
how to do it.

Estimating P (E |L): case of two measurements of equal accuracy. As
we have mentioned earlier, the situation becomes suspicious when the intersec-
tion becomes too narrow, i.e., when the ratio r of the width of the intersection
to the width 2∆ of the original interval becomes too low. So, as an appropriate
event r, it is reasonable to select an inequality r ≤ r0 for some r0.

The ratio r depends on the result of the second measurement which, in its
turn, depends on the actual value of the measured quantity. So, to estimate
the desired conditional probability, we need to estimate the probabilities of
different actual values, and the probabilities of different results of the second
measurement.

The actual value can be any number from the interval [x̃−∆, x̃+∆]. There is
no reason to assume that some values from this interval are more probable and
some are less probable – it is therefore reasonable to assume that all the values
from this interval are equally probable, i.e., that the actual value is uniformly
distributed on this interval. This argument – known as Laplace Indeterminacy
Principle – is widely used in applications of statistics; see, e.g., [3, 4].

Alternatively, we can say that the actual value is equal to x = x̃ − ∆x,
where ∆x is uniformly distributed on the interval [−∆,∆]. The result x̃′ of
the second measurement is obtained by adding, to the actual value x, the mea-
surement error ∆x′ of the second measurement. We consider the case when
both measurements are equally accurate, with the same upper bound on the
measurement error ∆′ = ∆, the measurement error ∆x′ can also take any value
from the interval [−∆,∆]. Similarly to ∆x, it is therefore reasonable to assume
that this measurement error is uniformly distributed on the interval [−∆,∆].

In terms of the first measurement result x̃ and measurement errors, the
second measurement result x̃′ has the form x̃′ = x + ∆x′ = x̃ − ∆x + ∆x′,

i.e., the form x̃′ = x̃ + d, where we denoted d
def
= −∆x + ∆x′. The difference

takes a value d if the first measurement error takes some value f and the second
measurement error takes the value s = f + d. The measurement errors ∆x and
∆x′ are independent, so for the probability density ρ(d) of the difference δ we
can use the independence-based formula ρ(d) =

∫
ρ1(f) · ρ2(d+ f) df , where ρi

are probability density functions corresponding to different measurement errors.
Both measurement errors are uniformly distributed on the interval [−∆,∆], thus
ρ1(z) = ρ2(z) = 1/(2∆) for all z ∈ [−∆,∆]. Thus, the integral is over all f
for which −∆ ≤ f ≤ ∆ and −∆ ≤ f + d ≤ ∆. In particular, for d ≥ 0,
these two inequalities are equivalent to −∆ ≤ f ≤ ∆ − d. The width of this
integral is (∆ − d) − (−∆) = 2∆ − d. For each such value f , the integrated
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expression is equal to
1

2∆
· 1

2∆
=

1

4∆2
. Thus, for d ≥ 0, the integral is equal

to ρ(d) =
1

4∆2
· (2∆ − d). A similar formula can be derived for d ≤ 0, so, in

general, we get

ρ(d) =
1

4∆2
· (2∆− |d|). (3)

Based on the measurement result x̃′ = x̃ + d, we form an interval [x̃′ −
∆, x̃′+∆] = [x̃+d−∆, x̃+d+∆] and take the intersection of this interval with
the interval [x̃−∆, x̃+ ∆] coming from the first measurement. For d ≥ 0, this
intersection has the form [x̃+d−∆, x̃+∆], and has a width of 2∆−d. A similar
formula can be obtained from d ≤ 0, so, in general, the width of the intersection
interval is 2∆− |d|, and the ratio between this width and the original width is

r =
2∆− |d|

2∆
. Thus, the inequality r ≤ r0 is equivalent to 2∆−|d| ≤ r0 ·2∆, i.e.,

equivalent to |d| ≥ 2∆ · (1− r0). The probability that r ≤ r0 can be computed
as ∫ −2∆·(1−r0)

−2∆

ρ(d) dd+

∫ 2∆

2∆·(1−r0)

ρ(d) dd.

Substituting the above formula for the probability density ρ(d) into this expres-
sion and computing the integrals, we conclude that

P (E |L) = r2
0. (4)

As a result, we arrive at the following conclusion:

So when should we be sure that the second measurement is not an
outlier: case of two measurements of the same accuracy. Based on
formulas (2) and (4), we make this conclusion is

r0 ≥

√
p0 · t0

(1− p0) · (1− t0)
, (5)

where:

• r0 is the ratio of the width of the intersection interval (obtained after two
measurements) to the width of the original interval (corresponding to first
measurement only),

• p0 is the frequency of outliers, and

• t0 is the desired confidence.

For example, if the frequency p0 of outliers in 5%, and we want to achieve at
least 80% confidence t0, then we should only consider the cases when r0 ≥ 0.45.
In other words, if the intersection is more than twice narrower than the original
interval, this becomes suspicious.

What if the second measurement is more accurate. So far, we have
considered the case when both measurements were equally accurate. Let us
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now consider the case when the second measurement is more accurate, i.e.,
when ∆′ < ∆. Let us first describe, for this case, the corresponding probability
density function ρ(d) =

∫
ρ1(f) · ρ2(d + f) df . Similarly to the above case,

without losing generality, it is sufficient to consider the case when d ≥ 0.
The product of the two probability density functions ρi is different from

0 if and only if both factors are positive, i.e., if and only if −∆ ≤ f ≤ ∆
and −∆′ ≤ f + d ≤ ∆′. The second inequality is equivalent to −∆′ − d ≤
f ≤ ∆′ − d. By combining the two double inequalities on f , we conclude that
max(−∆,−∆′−d) ≤ f ≤ min(∆,∆′−d). Here, ∆′ < ∆, thus ∆′−d ≤ ∆′ < ∆.
So, the upper bound for f is always equal to ∆′ − d.

In the lower bound, the term −∆′ − d is larger than ∆ when d ≤ ∆ −∆′.
In this case, the resulting double inequality on f takes the form −∆′ − d ≤
f ≤ ∆′ − d. The width of the corresponding interval is 2∆′, thus the overall

probability density is equal to ρ(d) =
1

4∆ ·∆′
· (2∆′) =

1

2∆
.

When d ≥ ∆ − ∆′, then −∆ ≥ −∆′ − d, thus the inequalities on f take
the form −∆ ≤ f ≤ ∆′ − d. The width of this interval is ∆ + ∆′ − d, thus the

probability density is equal to ρ(d) =
1

4∆ ·∆′
· (∆ + ∆′ − d).

When the second measurement result is x̃′ = x̃+d, the interval that we build
based on this measurement result is [x̃′−∆′, x̃′+ ∆′] = [x̃+ d−∆′, x̃+ d+ ∆′].
We need to form an intersection between this interval and the original interval
[x̃ − ∆, x̃ + ∆]. For d ≥ 0, the lower bound x̃ + d − ∆′ is always larger than
x̃−∆, so the left endpoint of the intersection interval is always x̃+ d−∆. The
right endpoint is the smallest of the values x̃+ d+ ∆′ and x̃+ ∆.

• When d ≤ ∆−∆′, the value x̃+ ∆ is smaller, so the intersection has the
form [x̃+ ∆′, x̃+ d+ ∆′]. This interval has width 2∆′ – which is exactly

the width of the second interval, and the ratio of widths is r =
∆′

∆
.

• When d ≥ ∆−∆′, then the intersection has the form [x̃+ d−∆′, x̃+ ∆];
its width is ∆ + ∆′ − d, and thus, the ratio r of its width to the width of

the original (first) interval is r =
∆ + ∆′ − d

2∆
.

The inequality r ≤ r0 is equivalent to
∆ + ∆′ − d

2∆
≤ r0, i.e., equivalently, to

∆ + ∆′ − d ≤ r0 · 2∆ and d ≥ d0
def
= ∆ · (1 − 2r0) + ∆′. The probability that

r ≤ r0 can be thus computed as the integral of the probability density function
ρ(d) for d ≥ d0 (and d smaller than or equal to its largest possible value ∆+∆′).
This integral is an area under the corresponding curve, and since the function
ρ(d) linearly decreases for larger d, this is just an area of the triangle in which
one side is ∆ + ∆′ − d0 (which happens to be equal to r0 · 2∆) and the height

is the value of ρ(d0), i.e., the value
∆ + ∆′ − d0

4∆ ·∆′
=
r0 · 2∆

4∆ ·∆′
=

r0

2∆′
. The area of

the triangle is thus equal to
1

2
· r0 · 2∆ · r0

2∆′
=

1

2
· r2

0 ·
∆

∆′
. We need to double
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this probability, since, in addition to the values d ≥ 0, we have exactly same set
of values d ≤ 0. Thus, the overall probability that r ≤ r0 is equal to

P (E |L) = r2
0 ·

∆

∆′
. (6)

When should we be sure that the second measurement is not an
outlier: case when the second measurement is more accurate. Based
on the formulas (2) and (6), we conclude that we should be sure if

r0 ≥

√
p0 · t0

(1− p0) · (1− t0)
·
√

∆′

∆
. (7)

Comment. On the qualitative level, this formula makes sense: if the second
measurement is more accurate, the resulting accuracy is better than if had two
measurements of the same accuracy. So, in general, we get a smaller ratio r – and
thus, in this case, smaller r does not necessarily indicate possible inconsistency.

What if the first measurement is more accurate. Let us now consider the
remaining case, when the first measurement is more accurate, i.e., when ∆ < ∆′.
Let us first describe, for this case, the corresponding probability density function
ρ(d) =

∫
ρ1(f) · ρ2(d + f) df . Similarly to the above two cases, without losing

generality, it is sufficient to consider the case when d ≥ 0.
The product of the two probability density functions ρi is different from

0 if and only if both factors are positive, i.e., if and only if −∆ ≤ f ≤ ∆
and −∆′ ≤ f + d ≤ ∆′. The second inequality is equivalent to −∆′ − d ≤
f ≤ ∆′ − d. By combining the two double inequalities on f , we conclude that
max(−∆,−∆′−d) ≤ f ≤ min(∆,∆′−d). Here, ∆ < ∆′, thus −∆′−d ≤ −∆′ <
−∆. Thus, the lower bound for f is always equal to −∆.

In the upper bound, the term ∆′ − d is larger than ∆ when d ≤ ∆′ −∆. In
this case, the resulting double inequality on f takes the form −∆ ≤ f ≤ ∆. The
width of the corresponding interval is 2∆, thus the overall probability density

is equal to ρ(d) =
1

4∆ ·∆′
· (2∆) =

1

2∆′
.

When d ≥ ∆−∆′, then ∆′−d ≤ ∆, thus the inequalities on f take the form
−∆ ≤ f ≤ ∆′−d. The width of this interval is ∆ + ∆′−d, thus the probability

density is equal to ρ(d) =
1

4∆ ·∆′
· (∆ + ∆′ − d).

When the second measurement result is x̃′ = x̃+d, the interval that we build
based on this measurement result is [x̃′−∆′, x̃′+ ∆′] = [x̃+ d−∆′, x̃+ d+ ∆′].
We need to form an intersection between this interval and the original interval
[x̃−∆, x̃+ ∆]. For d ≥ 0, the upper x̃+ ∆ is always smaller than x̃+ d+ ∆′, so
the right endpoint of the intersection interval is always x̃+∆. The left endpoint
is the largest of the values x̃+ d−∆′ and x̃−∆.
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• When d ≤ ∆′ −∆, the value x̃ −∆ is larger, so the intersection has the
form [x̃ − ∆, x̃ + ∆]. This interval has width 2∆ – which is exactly the
width of the first interval, and the ratio of widths is 1.

• When d ≥ ∆−∆′, then the intersection has the form [x̃+ d−∆′, x̃+ ∆];
its width is ∆ + ∆′ − d, and thus, the ratio r of its width to the width of

the original (first) interval is r =
∆ + ∆′ − d

2∆
.

The inequality r ≤ r0 is equivalent to
∆ + ∆′ − d

2∆
≤ r0, i.e., equivalently, to

∆ + ∆′ − d ≤ r0 · 2∆ and d ≥ d0
def
= ∆ · (1 − 2r0) + ∆′. The probability that

r ≤ r0 can be thus computed as the integral of the probability density function
ρ(d) for d ≥ d0 (and d smaller than or equal to its largest possible value ∆+∆′).
This integral is an area under the curve, and since the function ρ(d) linearly
decreases for larger d, this is just an area of the triangle in which one side is
∆ + ∆′ − d0 (which happens to be equal to r0 · 2∆) and the height is the value

of ρ(d0), i.e., the value
∆ + ∆′ − d0

4∆ ·∆′
=
r0 · 2∆

4∆ ·∆′
=

r0

2∆′
. The area of the triangle

is thus equal to
1

2
·r0 ·2∆ · r0

2∆′
=

1

2
·r2

0 ·
∆

∆′
. We need to double this probability,

since, in addition to the values d ≥ 0, we have exactly same set of values d ≤ 0.
Thus, the overall probability that r ≤ r0 is equal to

P (E |L) = r2
0 ·

∆

∆′
. (8)

When should we be sure that the second measurement is not an
outlier: case when the first measurement is more accurate. Based on
the formulas (2) and (8), we conclude that we should be sure if

r0 ≥

√
p0 · t0

(1− p0) · (1− t0)
·
√

∆′

∆
. (9)

Comment. Here, ∆′ > ∆, so the threshold value r0 is large. This also makes
intuitive sense: if the first measurement was more accurate, then it is highly
improbable that would improve the overall accuracy by performing the second,
much less accurate measurement. If we perform a lousy quality measurement
and mysteriously get a very good result, this is highly suspicious.

What to do in the general case. In the general case of multi-D mea-
surements, we can also have suspicious cases when the after adding one more
measurement, the area of possible values of the tuple of the corresponding quan-
tities q = (q1, . . . , qn) decreases too much. Similarly to the 1-D case, we do have
any reason to believe that some of possible value of q are more probable than
others. It is therefore reasonable to conclude that all the values from this area
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are equally probable. In this case, the probability to be in a sub-area is pro-
portional to the volume of this sub-area. So, if the volume decreases too much,
this is suspicious, and it is a sign that the new measurement may be an outlier;
see, e.g., [1, 2].

In the general case, we do not have explicit analytic formulas, but we can
run Monte-Carlo simulations with simulated measurement errors uniformly dis-
tributed in the corresponding intervals, get the corresponding distribution for
the decrease in volume, and when the actual decrease is at the end of this distri-
bution – with probability of r ≤ r0 too small – we dismiss the new measurement
result as a possible outlier.
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