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Abstract

Intuitively, it seems that cultural preference for boys should lead to
a gender disbalance – more boys than girls. This disbalance is indeed
what is often observed, and this disbalance is what many models predict.
However, in this paper, we show, on a realistic example, that preference
for boys does not necessarily lead to a gender disbalance: in our simplified
example, boys are clearly preferred, but still there are exactly as many
girls as there are boys.

1 Formulation of the Problem

Preference for boys – a cultural phenomenon. In many cultures, it is
important to have a son. So, if a family has a daughter, the parents continue
to produce children until they have the desired son.

In such situations, it is reasonable to expect gender disbalance. Intu-
itively, it seems that this will lead to a gender disbalance, i.e., that we will have
more boys than girls. Such a disbalance is indeed observed in many countries
where cultures have such a preference, e.g., in Thailand.

This disbalance is predicted by several models of this phenomenon; see,
e.g., [1].

What we do in this paper. In this paper, we consider a simplified model
of preference for sons in which, somewhat surprisingly, this preference does not
lead to a gender disbalance.

Our main simplifying assumption is based on the fact that in many countries
with a strong preference for boys, most people are poor, they cannot afford to
have too many children – even one child is not easy to support. For such
countries, it is reasonable to make a simplifying assumption that, once the
family gets a son, they stop producing children.
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Comment. To make it understandable to people who are interested in demo-
graphic questions but may not be mathematically sophisticated, we have tried
to make this example as mathematically clear as possible.

2 Description of Our Example

Deriving the formula. Let us make an additional simplifying assumption that
each new child can be a boy or a girl with equal probability 0.5, and that genders
of different children are statistically independent. In reality, the probabilities
of having a boy and having a girl are slightly different form 0.5, but for our
approximate computations, we can ignore this difference.

So, with probability 1/2 = 2−1, the first child is a son. In this case, according
to our assumption, the family will stop producing children. So, in this case, the
family will have 0 girls.

If the first child is a girl, then the family produces a second child. With
probability 1/2, this second child is a son. Since the genders of different children
are statistically independent, the overall probability of this situation is equal to
(1/2) · (1/2) = 2−2. In this situation, the family has 1 girl.

If the second child is also a girl, then the family produces a third child. With
probability 1/2, this third child is a son. Since the genders of different children
are statistically independent, the overall probability of this situation is equal to
(1/2) · (1/2) · (1/2) = 2−3. In this situation, the family has 2 girls.

In general, the family can have n girls before they have a boy. The probability
of such situation, when we have n girls followed by a boy, is equal to

(1/2) · . . . · (1/2) (n times) · (1/2) = 2−(n+1). (1)

In this model, each family has exactly one boy. The expected number g of
girls in the family is equal to

g = 0 · 2−1 + 1 · 2−2 + 2 · 2−3 + . . . + n · 2−(n+1) + . . . (2)

Computing the formula. Let us find the value g. For this purpose, let us
multiply both sides of the formula (2) by 2; then, each term n ·2−(n+1) becomes

2 · n · 2−(n+1) = n · (2 · 2−(n+1)) = 2−n,

so we get
2 · g = 0 · 20 + 1 · 2−1 + 2 · 2−2 + . . . + n · 2−n + . . . (3)

Now, we can subtract, term by term, the formula (2) from the formula (3). Each
term in both formulas has the form const · 2−k, for some natural number k. It
is therefore natural to subtract terms corresponding to the same k.

• In the formula (2), we have k = n+ 1, so n = k− 1, and the coefficient at
this term is n = k − 1.
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• In the formula (3), this term corresponds to k = n, so the coefficient at
this term is n = k.

Thus, when we subtract the two expressions, each difference becomes

k · 2−k − (k − 1) · 2−k = 2−k,

so we get:

g = 2 · g − g = 0 · 20 + (1 − 0) · 2−1 + (2 − 1) · 2−2 + (3 − 2) · 2−3 + . . . =

2−1 + 2−2 + 2−3 + . . . + 2−n + . . . (4)

To compute the right-hand side of the expression (4), we can use the same trick:
double both sides, as a result we get

2 · g = 20 + 2−1 + 2−2 + . . . + 2−(n−1) + . . . (5)

When we subtract (4) from (5), all terms 2−k cancel each other, expect for the
term 20:

g = 2 · g − g = 20 + (2−1 − 2−1) + (2−2 − 2−2) + . . . = 20 = 1. (6)

Conclusion. So, for each boy, we have, on average, g = 1 girl – which shows
that there is no gender disbalance, we have exactly as many boys as girls.
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