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Abstract

One of the applications of intervals is in describing experts’ degrees
of certainty in their statements. In this application, not all intervals are
realistically possible. To describe all realistically possible degrees, we end
up with a mathematical question of describing all topologically closed
classes of intervals which are closed under the appropriate minimum and
maximum operations. In this paper, we provide a full description of all
such classes.

1 Formulation of the Problem

Numerical and interval-valued fuzzy degrees: a brief reminder. One
of the main ideas behind traditional logic is that every statement is either true
or false. In the computer, “true” is usually represented as 1 and “false” as 0.

In practice, people are often not 100% confident in their statements. A nat-
ural way to describe a person’s degree of confidence in a statement is to use
numbers intermediate between the value 1 (corresponding to full confidence)
and the value 0 (corresponding to the complete absence of confidence). This
representation of degrees of confidence by numbers from the interval [0, 1] is one
of the main ideas behind fuzzy logic, a methodology for transforming imprecise
(“fuzzy”) expert statements into precise computer-understandable form; see,
e.g., [1, 3, 5, 7, 8, 9].

If we have two statements A1 and A2 with degrees of confidence a1 and
a2, then our degree of confidence in a composite statement A1 &A2 cannot
exceed neither a1 not a2 and thus, must be smaller than or equal to min(a1, a2).
Similarly, our degree of confidence in a composite statement A1 ∨ A2 cannot
be smaller than either a1 or a2 and thus, must be greater than or equal to
max(a1, a2).

The most natural way to estimate the expert’s degree of confidence is to ask
the expert him/herself. The problem is that just like the expert is not certain
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about his/her statement, he/she is also not confident about the exact degree of
confidence. From this viewpoint, it is more natural to characterize the degree
of confidence not by a single value, but by an interval of possible values, i.e., by
a subinterval of the interval [0, 1]; see, e.g., [5].

The minimum and maximum operations can be naturally extended to such
intervals, in the usual interval-computation way (see, e.g., [2, 4, 6]):

min([a1, b1], [a2, b2])
def
= {min(v1, v2) : v1 ∈ [a1, b1] & v2 ∈ [a2, b2]};

max([a1, b1], [a2, b2])
def
= {max(v1, v2) : v1 ∈ [a1, b1] & v2 ∈ [a2, b2]}.

Since both min and max are monotonic functions, these ranges are easy to
compute:

min([a1, b1], [a2, b2]) = [min(a1, a2),min(b1, b2)]; (1)

max[a1, b1], [a2, b2]) = [max(a1, a2),max(b1, b2)]. (2)

Not all intervals are realistic. In principle, we can consider all possible
subintervals of the interval [0, 1], but in practice, not all of them appear. For
example, the interval [0, 1] would mean that the expert has no idea whether
his/her statement is true or not – but in this case, the expert would not make
this statement. It is therefore desirable to describe the class of all realistic
intervals.

What are the natural properties of such a class? It is reasonable to require
that this class be closed under the application of operations (1) and (2).

Also, since close values of degree are practically indistinguishable, when
we have a sequence of realistic intervals that converges to a limit, this limit
is indistinguishable from all sufficiently close elements of this sequence – so it
makes sense to consider this limit interval realistic too. In other words, it makes
sense to require that the class of realistic intervals be topologically closed.

In this paper, we describe all resulting classes. The result is simple, and the
proof is straightforward.

2 Result

Definition. By a class of realistic intervals, we mean the class C of subintervals
of the interval [0, 1] which contains all numbers from this interval (i.e., all de-
generate intervals [a, a]), which is topologically closed, and which is closed under
minimum and maximum operations (1) and (2).

Proposition.

• Every class C of realistic intervals has the form

C = {[a, b] : a ≤ b ≤ f(a)}, (3)

where f(a) is a monotonic right-continuous function for which a ≤ f(a)
for all a.
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• For each monotonic right-continuous function for which a ≤ f(a) for all
a, the class defined by the formula (3) is a class of realistic intervals.

Reminder. Right-continuous means that for every sequence an → a for which
an ≥ a for all n, we have f(an)→ f(a).

Example. We can take f(a) = min(f(a) + δ, 1) for some δ > 0.

Proof.

1◦. Let C be a class of realistic intervals. For each a, there are intervals [a, b] in
the class C – e.g., the degenerate interval [a, a]. Let us define

f(a)
def
= sup{b : [a, b] ∈ C}. (4)

The supremum f(a) is a limit of values bn for which [a, bn] ∈ C. Thus, since the
class C is closed, the interval [a, f(a)] also belongs to this class C:

[a, f(a)] ∈ C. (5)

2◦. By definition of the supremum, no interval [a, b] with b > f(a) belongs to
the class C. On the other hand, if a ≤ b ≤ f(a), then the interval [a, b] indeed
belongs to the class C, since this interval is equal to the result min([b, b], [a, f(a)])
of applying the operation (1) to intervals [b, b] and [a, f(a)] from this class – and
the class C is closed under this operation.

Thus, the class C indeed has the form (3).

3◦. Let us prove that the function f(a) defined by the formula (4) is indeed
monotonic, right-continuous, and satisfies the condition a ≤ f(a).

3.1◦. The last condition is the easiest to prove, since the class C contain an
interval [a, f(a)], and the upper endpoint of an interval is always great than or
equal to its lower endpoint.

3.2◦. Monotonicity is also easy: if a ≤ a′, then, since [a, f(a)] ∈ C, we have
max([a′, a′], [a, f(a)]) = [a′,max(a′, f(a)] ∈ C. Thus, by definition of f(a′) as
the largest b for which [a′, b] ∈ C, we conclude that max(a′, f(a)) ≤ f(a′). Since
f(a) ≤ max(a′, f(a)), we thus get f(a) ≤ f(a′).

3.3◦. Let us now prove right continuity. Suppose that an → a and an ≥ a for
all n. Since the function f(a) is monotonic, we have f(a) ≤ f(an) for all n and
thus, in the limit:

f(a) ≤ lim inf f(an). (6)

Due to (3), for each n, we have [an, f(an)] ∈ C. For a subsequence f(ank
)

that converges to the upper limit lim sup f(an), due to topological closeness, we
have [a, lim sup f(an)] ∈ C. By definition (4) of the function f(a), this means
that

lim sup f(an) ≤ f(a). (7)
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Since we always have lim inf f(an) ≤ lim sup f(an), inequalities (6) and (7)
imply that

f(a) ≤ lim inf f(an) ≤ lim sup f(an) ≤ f(a),

thus
lim inf f(an) = lim sup f(an) = f(a).

Since the lower and upper limits coincide, this means that the sequence f(an)
indeed has a limit, and this limit is equal to f(a). Right continuity is now
proven.

4◦. To complete the proof, let us show that for every a monotonic right-
continuous function f(a) for which a ≤ f(a) for all a, the formula (3) defines
a class of realistic intervals, i.e., that the resulting class contains all numbers
from this interval, is topologically closed, and is closed under minimum and
maximum operations.

Let us prove these properties one by one.

4.1◦. Since a ≤ f(a), each interval [a, a] belongs to the class C.

4.2◦. Let us prove that the class C is topologically closed, i.e., that if [an, bn]→
[a, b] and [an, bn] ∈ C for all n, then [a, b] ∈ C.

By definition of the class (3), for each n, we have bn ≤ f(an). Let us consider
two cases.

4.2.1◦. If for infinitely many values ank
, we have ank

≤ a, then, due to mono-
tonicity, we have f(ank

) ≤ f(a), so for bnk
≤ f(ank

), we also have bnk
≤ f(a),

and in the limit, we get b ≤ f(a), i.e., [a, b] ∈ C.

4.2.2◦. In the opposite case, when for all but finitely many indices n, we have
a < an, then, due to right continuity, we have f(an) → f(a). Thus, from
bn ≤ f(an), in the limit, we get b ≤ f(a), i.e., also [a, b] ∈ C.

4.3◦. Let us show that the class C is closed under the minimum operation.
Indeed, let us assume that [a1, b1] ∈ C and [a2, b2] ∈ C, i.e., b1 ≤ f(a1) and

b2 ≤ f(a2). Let us prove that for [a, b]
def
= [min(a1, a2),min(b1, b2)], we also

have [a, b] ∈ C. Without losing generality, we can assume that a1 ≤ a2, so
a = min(a1, a2) = a1. In this case, b = min(b1, b2) ≤ b1 ≤ f(a1) = f(a), so
indeed [a, b] ∈ C.

4.4◦. Finally, let us show that the class C is closed under the maximum opera-
tion.

Indeed, let us assume that [a1, b1] ∈ C and [a2, b2] ∈ C, i.e., b1 ≤ f(a1) and

b2 ≤ f(a2). Let us prove that for [a, b]
def
= [max(a1, a2),max(b1, b2)], we also

have [a, b] ∈ C. Without losing generality, we can assume that a1 ≤ a2, so
a = max(a1, a2) = a2. Here, b2 ≤ f(a2), and since b1 ≤ f(a1) and f(a) is a
monotonic function, f(a1) ≤ f(a2) and thus, b1 ≤ f(a2). From b1 ≤ f(a2) and
b2 ≤ f(a2), we conclude that b = max(b1, b2) ≤ f(a2) = f(a), so indeed [a, b] ∈
C.

The proposition is proven.
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