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Abstract

In many real-life situations, we do not know the exact values of the
expected gain corresponding to different possible actions, we only have
lower and upper bounds on these gains – i.e., in effect, intervals of possible
gain values. How can we made decisions under such interval uncertainty?
In this paper, we show that natural requirements lead to a 2-parametric
family of possible decision-making strategies.

1 Formulation of the Problem

Decision making: a brief reminder. In many real-life situations, we need
to select an appropriate action. In economics, a reasonable idea is to select an
action that leads to the largest values of the expected gain; see, e.g., [1, 3, 4, 5, 6].
This way, if we repeatedly make such a selection, then, due to the law of large
numbers, we will get the largest possible gain.

Need to take uncertainty into account. In practice, we often we often
cannot predict the exact consequence of each possible action. As a result, for
each action a, instead of the exact value ua of the expected gain, we only know
the interval [ua, ua] of possible gain values.

Comment. It is often convenient to represent this interval in the equivalent
form, as [ũa −∆a, ũa + ∆a], where

ũa =
ua + ua

2
and ∆a =

ua − ua
2

.

How to make decisions under interval uncertainty. How can we make
decisions under such interval uncertainty? In other words, when can we decide
that Action 1 is better than Action 2? In general, we have three possible cases.
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Sometimes, we can guarantee that Action 1 is better than Action 2. This
happens if every value u1 from the interval [u1, u1] is larger than or equal to every
value u2 from the interval [u2, u2]. One can easily check that this is equivalent
to requiring that the smallest possible value u1 from the interval [u1, u1] is larger
than or equal to the largest possible value u2 from the interval [u2, u2], i.e., that:

u1 ≤ u2.

Sometimes, we can guarantee that Action 2 is better than Action 1, i.e., that
every value u2 from the interval [u2, u2] is larger than or equal to every value u1
from the interval [u1, u1]. Similarly to the previous case, we can conclude that
this condition is equivalent to:

u1 ≤ u2.

In all other cases, i.e., when

u2 < u1 and u1 < u2,

we cannot make a guaranteed conclusion: in such cases, it can be that Action
1 is better, and it can also be that Action 2 is better.

So which action should we select? In situations in which we can guarantee
that one of the actions if better, this better action is the one we should select.
But what if we are in the situation when no such guarantee is possible? Which
action should we then recommend?

This is a question that we consider in this paper.

Comment. It is not necessary to provide recommendation for all the cases, but
we would like to be able to provide recommendation for at least some of the
cases.

2 Analysis of the Problem

What do we want. We want to be able, for some intervals [u1, u1] and [u2, u2],
to say that the second interval is better (or of the same quality). We will denote
this relation by the usual inequality sign:

[u1, u1] ≤ [u2, u2].

What are the natural requirements on this relation?

First natural requirement: transitivity. If Action 2 is better than (or of
the same quality as) Action 1, and Action 3 is better than (or of the same
quality as) Action 2, then we should be able to conclude that Action 3 is better
than (or of the same quality as) Action 1, i.e., that the relation ≤ on the class
of all intervals should be transitive:

if [u1, u1] ≤ [u2, u2] and [u2, u2] ≤ [u3, u3], then [u1, u1] ≤ [u3, u3]. (1)
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Second natural requirement: reflexivity. Each interval has the same qual-
ity as itself. So, for every interval [u, u], we should have:

[u, u] ≤ [u, u]. (2)

Third natural requirement: consistency with common sense. It is
reasonable to require that if Action 2 is guaranteed to be better than Action 1,
then we will still select Action 2:

if u1 ≤ u2, then [u1, u1] ≤ [u2, u2]. (3)

Fourth natural requirement: scale-invariance. If we multiply all the gains
by the same positive constant c > 0, then whichever gain was larger remains
larger, and whichever gain was smaller remains smaller. This multiplication
corresponds, e.g., to switching from the original currency to the one which is c
times smaller: the mere change of currency should not change which action is
better. It is therefore reasonable to require that a similar change of currency
should not affect decision making under uncertainty either, i.e., that:

if [u1, u1] ≤ [u2, u2] then [c · u1, c · u1] ≤ [c · u2, c · u2]. (4)

Fifth natural requirement: additivity. If we add the same amount to the
two gains, this will not change which gain is larger. Similarly, if we add the same
interval-valued gain [c, c] to the gains of both actions, this should not change
which action was better.

If we have two independent situations, in one of which the gain can be
anything from ui to ui and in the second one anything from c to c, then the
smallest possible value of the overall gain is when both gains are the smallest,
i.e., when we have ui + c, and the largest possible value of the overall gain is
when both gains are the largest, i.e., when we have ui + c.

Thus, the above requirement takes the following form:

[u1, u1] ≤ [u2, u2] if and only if [u1 + c, u1 + c] ≤ [u2 + c, u2 + c]. (5)

Final natural requirement: closeness. When the values of u and u are
close, the corresponding alternatives are practically indistinguishable. Thus, it

is reasonable to require that if we have two sequences of intervals
[
u
(n)
1 , u

(n)
1

]
and[

u
(n)
2 , u

(n)
2

]
for which

[
u
(n)
1 , u

(n)
1

]
≤

[
u
(n)
2 , u

(n)
2

]
, and endpoints of both intervals

tends to some limits, then, since the limit intervals are indistinguishable from
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these one for sufficiently large n, we should expect the same relation ≤ for the
limit intervals as well:

if
[
u
(n)
1 , u(n)1

]
≤

[
u
(n)
2 , u

(n)
2

]
for all n, and u

(n)
i → ui and u

(n)
i → ui,

then [u1, u1] ≤ [u2, u2]. (6)

Now, we are ready to formulate our main result.

3 Definitions and the Main Result

Definition.

• We say that a binary relation ≤ on the set of all intervals is transitive if
it satisfies the condition (1).

• We say that a binary relation ≤ on the set of all intervals is reflexive if it
satisfies the condition (2).

• We say that a binary relation ≤ on the set of all intervals is consistent
with common sense if it satisfies the condition (3).

• We say that a binary relation ≤ on the set of all intervals is scale-invariant
if it satisfies the condition (4).

• We say that a binary relation ≤ on the set of all intervals is additive if it
satisfies the condition (5).

• We say that a binary relation ≤ on the set of all intervals is closed if it
satisfies the condition (6).

Proposition. For a binary relation ≤ on the set of all intervals, the following
two conditions are equivalent to each other:

• the relation is transitive, reflexive, consistent with common sense, scale-
invariant, additive, and closed;

• for some values α− and α+ for which −1 ≤ α− ≤ α+ ≤ 1, the relation
≤ has the following form: [ũ1 −∆1, ũ1 + ∆1] ≤ [ũ2 −∆2, ũ2 + ∆2] if and
only if either

∆1 ≤ ∆2 and ũ1 + α− ·∆1 ≤ ũ2 + α− ·∆2

or
∆2 ≤ ∆1 and ũ1 + α+ ·∆1 ≤ ũ2 + α+ ·∆2.

Comments.
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• The only case when we have a linear order, i.e., when for every two intervals
[u1, u1] and [u2, u2], we have either [u1, u1] ≤ [u2, u2] or [u2, u2] ≤ [u1, u1],
is when α− = α+. In this case, we get the known Hurwicz criterion for
decision making; see, e.g., [2, 3, 4].

• Relations described in the Proposition were first considered in [7, 8], but
with an additional requirement that [u1, u1] ≤ [u2, u2] implies ũ1 ≤ ũ2.
This requirement is not always satisfied: e.g., for α− = α+ = 1, when

[u1, u1] ≤ [u2, u2] if and only if u1 ≤ u2,

we have [1, 1] ≤ [−2, 2] but for the midpoints ũi of these intervals, the
opposite inequality is true: 1 > 0.

4 Proof

1◦. It is straightforward to prove that every relation of the above form indeed
satisfies conditions (1) through (6). So, to complete the proof, it is sufficient to
prove that if a relation satisfies the conditions (1)–(6), then it has the desired
form.

2◦. Let us first analyze how the interval [−1, 1] compares with different real
values u (i.e., with degenerate intervals [u, u]).

2.1◦. Due to consistency with common sense, we have u ≤ [−1, 1] when u ≤ −1.

Let us denote α−
def
= sup{u : u ≤ [−1, 1]}. This value is a limit of values for

which u ≤ [−1, 1], thus due to closeness, α− ≤ [−1, 1].
By transitivity, if u ≤ α−, then we also have u ≤ [−1, 1]. By definition of

α−, if u > α−, then we cannot have u ≤ [−1, 1]. Thus, we have

u ≤ [−1, 1] if and only if u ≤ α−. (7)

2.2◦. Similarly, due to consistency with common sense, we have [−1, 1] ≤ u

when 1 ≤ u. Let us denote α+
def
= inf{u : [−1, 1] ≤ u}. This value is a limit of

values for which [−1, 1] ≤ u, thus due to closeness, [−1, 1] ≤ α+.
By transitivity, if α+ ≤ u, then we also have [−1, 1] ≤ u. By definition of

α+, if u < α+, then we cannot have [−1, 1] ≤ u. Thus, we have

[−1, 1] ≤ u if and only if α+ ≤ u. (8)

3◦. Let us now compare two general intervals

[ũ1 −∆1, ũ1 + ∆1] and [ũ2 −∆2, ũ2 + ∆2].

There are three possible cases that we will consider one by one: when ∆1 = ∆2,
when ∆1 < ∆2, and when ∆2 < ∆1.
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3.1◦. When ∆1 = ∆2, then for [c, c] = [−∆1,∆1] = [−∆2,∆2], additivity
implies that

[ũ1 −∆1, ũ1 + ∆1] ≤ [ũ2 −∆2, ũ2 + ∆2] if and only if ũ1 ≤ ũ2.

So, in this case, the proposition is proven.

3.2◦. Let us now consider the case when ∆1 < ∆2. Then, for

[c, c] = [ũ2 −∆1, ũ2 + ∆1],

additivity implies that

[ũ1 −∆1, ũ1 + ∆1] ≤ [ũ2 −∆2, ũ2 + ∆2] if and only if

ũ1 − ũ2 ≤ [−(∆2 −∆1),∆2 −∆1]. (9)

By applying scale-invariance with c = ∆2 −∆1 > 0, we conclude that

ũ1 − ũ2 ≤ [−(∆2 −∆1),∆2 −∆1] if and only if
ũ1 − ũ2
∆2 −∆1

≤ [−1, 1]. (10)

Due to (7), this inequality is, in its turn, equivalent to

ũ1 − ũ2
∆2 −∆1

≤ α−. (11)

Multiplying both sides of this inequality by the positive number ∆2 − ∆1, we
get an equivalent inequality

ũ1 − ũ2 ≤ α− ·∆2 − α− ·∆1, (12)

i.e., equivalently,
ũ1 + α− ·∆1 ≤ ũ2 + α− ·∆2. (13)

Thus, from (9)–(13), we conclude that here, indeed:

[ũ1 −∆1, ũ1 + ∆1] ≤ [ũ2 −∆2, ũ2 + ∆2] if and only if

ũ1 + α− ·∆1 ≤ ũ2 + α− ·∆2. (14)

3.3◦. To complete the proof, we need to consider the case when ∆2 < ∆1. Then,
for [c, c] = [ũ1 −∆2, ũ1 + ∆2], additivity implies that

[ũ1 −∆1, ũ1 + ∆1] ≤ [ũ2 −∆2, ũ2 + ∆2] if and only if

[−(∆1 −∆2),∆1 −∆2] ≤ ũ2 − ũ1. (15)

By applying scale-invariance with c = ∆1 −∆2 > 0, we conclude that

[−(∆1 −∆2),∆1 −∆2] ≤ ũ2 − ũ1 if and only if [−1, 1] ≤ ũ2 − ũ1
∆1 −∆2

. (16)
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Due to (8), this inequality is, in its turn, equivalent to

α+ ≤
ũ2 − ũ1
∆1 −∆2

. (17)

Multiplying both sides of this inequality by the positive number ∆1 − ∆2, we
get an equivalent inequality

α+ ·∆1 − α+ ·∆2 ≤ ũ2 − ũ1, (18)

i.e., equivalently,
ũ1 + α+ ·∆1 ≤ ũ2 + α+ ·∆2. (19)

Thus, from (15)–(19), we conclude that here, indeed:

[ũ1 −∆1, ũ1 + ∆1] ≤ [ũ2 −∆2, ũ2 + ∆2] if and only if

ũ1 + α+ ·∆1 ≤ ũ2 + α+ ·∆2. (20)

So, in all three cases, the proposition is proven.
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