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Abstract

Talents are rare. It is therefore important to detect and nurture future
talents as early as possible. In many disciplines, this is already being done
– via gifted and talented programs, Olympiads, and other ways to select
kids with unusually high achievements. However, the current approach
is not perfect: some of the kids are selected simply because they are
early bloomers, they do not grow into unusually successful researchers;
on the other hand, many of those who later become very successful are
not selected since they are late bloomers. To avoid these problems, we
propose to use systems approach: to find the general formula for the
students’ growth rate, the formula that would predict the student’s future
achievements based on his current and previous achievement levels, and
then to select students based on the formula’s prediction of their future
success.

1 Formulation of the Problem

Talent is rare. In every activity, there are people who have extraordinary
talents, whose contribution to humanity is irreplaceable. Such people are rare.
It is therefore important to detect and nurture such people as early as possible.

Isn’t this what we are doing already? At first glance, in many countries
and in many disciplines, the search for early Einsteins is going full speed ahead
already: from the middle and high school levels, students are selected for gifted
and talented programs; many students participate in regional Olympiads in
mathematics, in physics, in chemistry, in computing, etc. Winners go to national
and international competitions, they get accepted to good colleges.

Some future talents are indeed revealed this way, but not all of them, and
not everyone who has been thus selected and praised becomes a new Einstein.
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Thus, this process needs to be improved. Here are some examples how the
current process does not always work.

Not all geniuses are fast. The first example is Einstein himself. Now, he is
universally recognized as a genius, but when he was in school, he was not the
best student in math. There were no Olympiads in his time, but there is no
way he could have won even in his school. It is difficult to tell what happened
when he was a student, but numerous memoirs of his later activity reveal one
reason why Olympiads would not have been his strongest point: he was a deep
thorough but comparatively slow thinker, and Olymiads – with their strict time
limit on problem solving – are designed for fast response. The Olympiads design
seem to follow the widely spread belief that you need to be fast thinker to be
good in math and in other similar disciplines. Analysis of real-life geniuses
shows that this belief is largely a myth; see, e.g., [1].

Sure, some geniuses are fast. For example, the famous 18/19 century math-
ematician Carl Friedrich Gauss was known to be so fast in math in his early
years that his teachers had to all the time come up with new problems to keep
him busy. On the other hand, we all know colleagues who are not very fast in
solving problems, who spend a lot of time on them, but who them come up with
deep and impactful solutions which are often much more valuable for time. For
example, in mathematics, two winners of the Fields Medal – the top award in
mathematics – Laurent Schwartz and Maryam Mirzakhani – mentioned honestly
that they have always been slow in solving math problem – and that because of
the widely spread myth that speed is important, they often doubted their own
talent [2, 11].

Some geniuses are late bloomers. Another reason why the Olympiads sys-
tem does not always reveal future Einsteins is that people mature at a different
speed: some are early bloomers, some are late bloomers. The Olympiad system
reveals early bloomers, but their advantage in comparison with other kids their
age is sometimes caused not by a special talent, but just by the fact that they
bloomed earlier. Moreover, there is evidence that the most drastic changes to
the world are brought by late bloomers; see, e.g., [5].

Everyone knows the story of a little prodigy Mozart who became a great
composer, but there are also numerous examples of late bloomers. For exam-
ple, there is a well-known story about Feodor Chaliapin, the internationally
renowned 20 century Russian opera signer. When he was a kid, with Alexei
Peshkov (who later became a famous Russian writer Maxim Gorky) he wanted
to join the church choir. The person in charge of the choir listened to both,
accepted Alexei, but dismissed Feodor as being unable to sign. The famous
Russian pianist Sviatoslav Richter started taking lessons in piano at the usually
late (for pianists) age of twenty two; see, e.g., [8]. Many famous artists started
unusually late, e.g., Vincent Van Gogh [9] and Paul Gauguin [10].

Whether a child is an early bloomer or a later bloomer is partly determined
by the genes – in particular, by the gender. For example, in middle school, girls
pass algebra at a higher rate than boys – this does not necessarily mean that
they are smarter than boys, just like the fact that in high school, boys are more
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successful in math does not predict their future math success; see, e.g., [12].
So basing decisions only on early success would be a mistake – we will miss

late bloomers.

It is important to test everybody. We cannot just rely on those who show
early success, this means that we have to test everyone. For example, a recent
study [6] showed that if we test everyone, we can find quite a few previously
undetected gifted students.

But how to test? We cannot just test the student’s current ability, we need
to take into account how this ability change with time.

How can we do it? In this paper, we do not yet propose an answer, but we
show a path that will hopefully lead to an answer.

2 A Systems Approach to Solving the Problem

What we want. At any year t, we can describe a person’s ability to solve
problems in the corresponding discipline by some numerical characteristic xt –
e.g., by a score on some test.

We know this ability xt0 at a current moment of time t0, we hopefully know
the values xt0−1, xt0−2, . . . at the previous years.

Based on these known values, we want to predict the ability xT at some
future year T – and we want to select and nurture those individuals for whom
this predicted values is high.

Main idea. The original problem of selecting future Einsteins sounds very
unusual and complicated. However, once we have reformulated this problem in
precise terms, we see that this is a common problem of predicting the future
values of a time series based on its past values. In is therefore reasonable to
apply the usual ways of solving this general problem.

The general idea of such prediction is based on the fact that, with good
accuracy, the current value xt significantly depends only of a few past values,
i.e., that

xt = f(xt−1, . . . , xt−k) (1)

for some small k.

Which k should we use? We cannot have k = 1, since this would mean
that the current value xt uniquely determines the next value xt+1; this value,
in turn, uniquely determines the next-to-next value xt+2, etc. – and at the end,
we conclude that the future value xT is uniquely determined by the current
value xt.

This is, in effect, the current approach to selecting future Einsteins – based
on their current success rate xt at a standardized test or on an Olympiad, and
we have already argued that this approach missed late bloomers.

So, for prediction, we need to use at least one more past moment of time.
When we consider dependence on two past moments of time, we can describe
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different maturing speeds. For example, to describe the general linear de-
pendence of achievement on time xt = c0 + c1 · t, we can use the formula
xt − xt−1 = xt−1 − xt−2, i.e., equivalently,

xt = 2xt−1 − xt−2.

What dependencies should we try? The general dynamics is described by
a function f(xt−1, . . . , xt−k) of k variables. From the commonsense viewpoint,
it is reasonable to assume that when the previous values xt−i change a little bit,
then the predicted value should also change a little bit, i.e., that the function
f(xt−1, . . . , xt−k) is continuous, is smooth, and probably even analytical.

As we have mentioned, prediction of time series is a usual problem in ap-
plications to the physical world, and in physics, a usual approach to finding an
unknown dependence is to expand it in Taylor series and to keep a few first
terms in this expansion – i.e., to approximate the desired function by a polyno-
mial; see, e.g., [4]. Let us thus use a similar approach. (In the Appendix, we
provide a mathematical justification for the use of polynomials as opposed to
other possible approximations – such as, e.g., Fourier series.)

As the first approximation, it is thus reasonable to use linear dependencies.
The advantage of such a linear formula is that we know the explicit expression
for a solution to a general linear dynamics:

xt = a0 + a1 · xt−1 + . . .+ ak · xt−k.

Specifically, this solution is a linear combination of a constant and expressions
of the type xp ·exp(a ·x) ·cos(b ·x) and xp ·exp(a ·x) · sin(b ·x), where ρ = a+i ·b
are solutions of the equation 1 = a1 · ρ + . . . + ak · ρk, and p is a non-negative
integer not exceeding the multiplicity of the corresponding solution. This allows
us to describe individual growth curves, but since the values a and b are fixed,
we cannot describe general growth curves, with varying growth rates – and this
is what we want to be able to detect future geniuses. Thus, we need to use a
non-linear dependence – at least quadratic:

xt = a0 +

k∑
i=1

ai · xt−i +
∑
i≤j

aij · xt−i · xt−j . (2)

So what do we propose. Our proposal is to select the parameters k and d,
and to try to approximate the actual growth curve xt of all the students by the
d-th order dependence:

xt = a0 +

k∑
i=1

ai · xt−i + . . .+
∑

i1≤...≤id

ai1...id · xt−i1 · . . . · xt−id . (3)

To find the coefficients ai1..., one can use the usual Least Squares method.
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It is reasonable to start with the simplest case k = 2 and d = 2. If this does
not lead to a good description of the growth rates, then it is reasonable increase
either k or d by 1, to check which of the two increases leads to a better fit, etc.

Once we arrive at a good fit formula, we can start using it to predict future
Einsteins.

We are optimistic. Will this approach work? We believe it will. One of
the main reasons for our belief is that many similar mathematical approaches
have been successful in solving problems from all the stages of the pedagogical
process; see, e.g., [7].

But we are not naively optimistic. Do we believe that the very first appli-
cation of our ideas will immediately lead to a success? Probably not.

Prediction of time series is a difficult problem. For example, several years
ago, Vladik’s father (and Olga’s father-in-law), who was a professional engineer
specializing in control, decided to apply known control techniques to predict
the effect of different doses of medicine on his sometimes high blood pressure.
This sounded like a good idea in comparison with the naive trial-and-error
approach recommended by his doctor – but the resulting complex algorithm
did not bring him any faster in finding the optimal dosage of medicine than for
his friends in similar situations who followed doctor’s recommendations – the
complex algorithm turned out to be actually slower.

A similar complex situation is happening right now, when many specialists
around the world are trying to predict the dynamics of the Covid-19 pandemic:
so far, none of these attempts has been very successful.

Difficult, yet, but we hope that eventually, we will succeed, and there will
be be no future Einstein left behind!
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Basel, 2001.

[12] US Department of Education, Office for Civil Rights, Gender Equity in
Education, Washington, DC, 2012, available at
https://www2.ed.gov/about/offices/list/ocr/docs/gender-equity-in-
education.pdf

A Which Models Should We Use to Describe
the Dynamics of Student Abilities

Towards a general formulation of the problem. We want to find a general
formula f(xt−1, . . . , xt−k) – i.e., a general analytical function of k variables –
that predicts the student’s abilities xt at moment t based on his/her abilities
xt−i at previous moments of time.

The space of all possible functions is infinite-dimensional – in the sense
that to fully identify a function, we need to select infinitely many parameters.
However, at any given moment of time, the number of observations is finite, and
based on the finite number of observations, we can only determine finitely many
parameters. Thus, we need to select a finite-parametric (finite-dimensional)
class of possible functions f . A natural way to do it is to select a basis of n
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analytical functions e1(xt−1, . . . , xt−k), . . . , en(xt−1, . . . , xt−k), and to consider
functions of the type

f(xt−1, . . . , xt−k) = C1 · e1(xt−1, . . . , xt−k) + . . .+ Cn · en(xt−1, . . . , xt−k) (4)

corresponding to different values of the coefficients Ci.
For such families, the dependence on the unknown parameters Ci is linear

and thus, determining the coefficients Ci can be done by using well-known and
easy-to-use techniques such as Least Squares.

How do we measure the student’s ability: a brief reminder. Whether it
is the usual IQ test or some other tests, usually, the score is obtained as follows:

• we add up the student’s scores on several problems and then

• normalize the result – e.g., for IQ, we divide this score by the average
score of all the students who took this test.

It is important to take into account that this average score changes with time,
as a result of which what was 120 many years ago may now be 110 or vice versa.
In other words, depending on which year we take for this normalization, we may
get somewhat different result.

When we transition from one normalization to another, all the values xt−i are
multiplied by the same coefficient λ – e.g., in the above example this coefficient
is λ = 110/120.

Related invariance requirement. Which year we select for normalization
is a question of mutual agreement, we could select a different year and use
values λ · xt−i instead of the current values xt−i. It is therefore reasonable to
require that our general model not depend on this arbitrary choice, i.e., that
the corresponding set of all possible approximating functions not change if we
re-normalize all the values:

{C1 · e1(xt−1, . . . , xt−k) + . . .+ Cn · en(xt−1, . . . , xt−k)}C1,...,Cn
=

{C1 · e1(λ ·xt−1, . . . , λ ·xt−k) + . . .+Cn · en(λ ·xt−1, . . . , λ ·xt−k)}C1,...,Cn
. (5)

Our main result. We prove that the invariance condition (5) implies that
all the functions ei(xt−1, . . . , xt−k) are polynomials – and thus, that all the
resulting approximating functions (4) are polynomials as well.

Proof. Indeed, each function ei(xt−1, . . . , xt−k) is analytical. Thus, it can be
expanded into Taylor series. Let us denote the sum all the terms of overall order
d in this expansion by Pd(xt−1, . . . , xt−k), so that

ei(xt−1, . . . , xt−k) = P0(xt−1, . . . , xt−k) + P1(xt−1, . . . , xt−k) + . . . (6)
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Here, P0 is the constant term, P1 is the sum of all the linear terms in the Taylor
expansion, P2 is the sum of all the quadratic terms in this expansion, etc. By
definition, for each d, we have

Pd(λ · xt−1, . . . , λ · xt−k) = λd · Pd(xt−1, . . . , xt−k),

thus from

ei(λ·xt−1, . . . , λ·xt−k) = P0(λ·xt−1, . . . , λ·xt−k)+P1(λ·xt−1, . . . , λ·xt−k)+. . . ,

we can conclude that

ei(λ·xt−1, . . . , λ·xt−k) = λ0·P0(xt−1, . . . , xt−k)+λ1·P1(xt−1, . . . , xt−k)+. . . (7)

Due to invariance requirement (5), the function (7) belongs to the space (4).
Let us show that for all values d for which the d-th term is not identically 0,
the function Pd(xt−1, . . . , xt−k) also belongs to the linear space (4). Indeed, let
us denote such indices by d1 < d2 < . . ., then we have

ei(xt−1, . . . , xt−k) = Pd1
(xt−1, . . . , xt−k) + Pd2

(xt−1, . . . , xt−k) + . . . (8)

and
ei(λ · xt−1, . . . , λ · xt−k) =

λd1 · Pd1(xt−1, . . . , xt−k) + λd2 · Pd2(xt−1, . . . , xt−k) + . . . (9)

With this function, a function λ−d1 · ei(λ ·xt−1, . . . , λ ·xt−k) also belongs to the
space (4), and this function has the form

λ−d1 · ei(λ · xt−1, . . . , λ · xt−k) =

Pd1(xt−1, . . . , xt−k) + λd2−d1 · Pd2(xt−1, . . . , xt−k) + . . .

When λ → 0, the limit of the right-hand side is equal to Pd1
(xt−1, . . . , xt−k).

A finite-dimensional linear space is closed, so this limit function also belongs to
the linear space (4). Thus, the difference ei(xt−1, . . . , xt−k)−Pd1

(xt−1, . . . , xt−k)
of the two functions from the linear space (4) also belongs to this space, and for
this difference, we have

ei(xt−1, . . . , xt−k)− Pd1
(xt−1, . . . , xt−k) = Pd2

(xt−1, . . . , xt−k) + . . .

Due to scale-invariance (5), if we plug in λ · xt−i instead of xti , we still get a
function from the linear space (4):

ei(λ·xt−1, . . . , λxt−k)−Pd1
(λ·xt−1, . . . , λ·xt−k) = Pd2

(λ·xt−1, . . . , λ·xt−k)+. . . =

λd2 · Pd2(xt−1, . . . , xt−k) + . . .

Thus, if we multiply this function by a constant λ−d2 , we still get a function
from the linear space (4):

λ−d2 ·(ei(λ·xt−1, . . . , λxt−k)−Pd1
(λ·xt−1, . . . , λ·xt−k)) = Pd2

(xt−1, . . . , xt−k)+. . .
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In the limit λ → 0, we conclude that the function Pd2(xt−1, . . . , xt−k) also
belongs to the linear space (4).

Similarly, we can prove that all the non-zero terms Pdm
(xt−1, . . . , xt−k) also

belong to the linear space. All these terms have different degrees and are,
therefore, linearly independent. Since the dimension of the linear space (4)
is n, we can only have no more than n linearly independent functions in this
space. Thus, no more than n terms Pd(xt−1, . . . , xt−k) can be different from
0. So, there are finitely many terms in the formula (8) that describes the basis
function ei(xt−1, . . . , xt−k). By definition, each of the terms Pd(xt−1, . . . , xt−k)
is a polynomial, so the function ei(xt−1, . . . , xt−k) is the sum of finitely many
polynomials and thus, a polynomial itself.

The statement is proven.
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