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Abstract

Empirical studies have shown that in many practical problems, out
of all symmetric membership functions, special distending functions work
best, and out of all hedge operations and negation operations, fractional
linear ones work the best. In this paper, we show that these empirical
successes can be explained by natural invariance requirements.

1 Formulation of the Problem

Fuzzy techniques: a brief reminder. In many applications, we have knowl-
edge formulated in terms of imprecise (“fuzzy”) terms from natural language,
like “small”, “somewhat small”, etc. To translate this knowledge into computer-
understandable form, Lotfi Zadeh proposes fuzzy techniques; see, e.g., [1, 11, 12,
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14, 15, 17]. According to these techniques, each imprecise property like “small”
can be described by assigning, to each value x of the corresponding quantity,
a degree µ(x) to which, according to the expert, this property is true. These
degrees are usually selected from the interval [0, 1], so that 1 corresponds to full
confidence, 0 to complete lack of confidence, and values between 0 and 1 de-
scribe intermediate degrees of confidence. The resulting function µ(x) is known
as a membership function.

In practice, we can only ask finitely many questions to the expert, so we
only elicit a few values µ(x1), µ(x2), etc. Based on these values, we need to
estimate the values µ(x) for all other values x. For this purpose, usually, we
select a family of membership functions – e.g., triangular, trapezoidal, etc. –
and select a function from this family which best fits the known values.

For terms like “somewhat small”, “very small”, the situation is more com-
plicated. We can add different “hedges” like “somewhat”, “very”, etc., to each
property. As a result, we get a large number of possible terms, and it is not
realistically possible to ask the expert about each such term. Instead, practi-
tioners estimate the degree to which, e.g., “somewhat small” is true based on
the degree to which “small” is true. In other words, with each linguistic hedge,
we associate a function h from [0, 1] to [0, 1] that transform the degree to which
a property is true into an estimate for the degree to which the hedged property
is true.

Similarly to the membership functions, we can elicit a few values h(xi) of the
hedge operation from the experts, and then we extrapolate and/or interpolate
to get all the other values of h(x). Usually, a family of hedge operations is
pre-selected, and then we select a specific operation from this family which best
fits the elicited values h(xi).

Similarly, instead of asking experts for their degrees of confidence in state-
ments containing negation, such as “not small”, we estimate the expert’s degree
of confidence in these statements based on their degrees of confidence in the pos-
itive statements. The corresponding operation n(x) is known as the negation
operation.

Need to select proper membership functions, proper hedge opera-
tions, and proper negation operations. Fuzzy techniques have been suc-
cessfully applied to many application areas. However, this does not necessarily
mean that every time we try to use fuzzy techniques, we get a success story. The
success (or not) often depends on which membership functions and which hedge
and negation operations we select: for some selections, we get good results (e.g.,
good control), for other selections, the results are not so good.

What we do in this paper. There is a lot of empirical data about which
selections work better. In this paper, we provide a general explanation for
several of these empirically best selections, an explanation based on the natural
concepts of invariance.

Specifically, we explain the following empirically successful selections:

• for symmetric membership functions that describe properties like “small”,
for which µ(x) = µ(−x) and the degree µ(|x|) decreases with |x|, in many
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practical situations, the most empirically successful are so-called distend-
ing membership functions, i.e., functions of the type

µ(x) =
1

1 + a · |x|b
(1)

for some a and b; see, e.g., [7, 8, 9];

• among hedge and negation operations, in many practical situations, the
most efficient are fractional linear functions

h(x) =
a+ b · x
1 + c · x

(2)

for some a, b, and c; see, e.g., [2, 3, 4, 5].

2 Analysis of the Problem

Re-scaling. The variable x describes the value of some physical quantity, such a
distance, height, difference in temperatures, etc. When we process these values,
we deal with numbers, but numbers depend on the selection of the measuring
unit: if we replace the original measuring unit with a new one which is λ times
smaller, then all the numerical values will be multiplied by λ: x → X = λ · x.
For example, 2 meters become 2 · 100 = 200 centimeters. This transformation
from one measuring scale to another is known as re-scaling.

Scale-invariance: idea. In many physical situations, the choice of a measuring
unit is rather arbitrary. In such situations, all the formulas remain the same no
matter what unit we use.

For example, the formula y = x2 for the area of the square with side x re-
mains valid if we replace the unit for measuring sides from meters with centime-
ters – of course, we then need to appropriately change the unit for y, from square
meters to square centimeters. In general, invariance of the formula y = f(x)
means that for each re-scaling x → X = λ · x, there exists an appropriate
re-scaling y → Y for which the same formula Y = f(X) will be true for the
correspondingly re-scaled variables X and Y .

Let us apply this idea to the membership function. It is reasonable
to require that the selection of the best membership functions should also not
depend on the choice of the unit for measuring the corresponding quantity x. In
other words, it is reasonable to require that for each λ > 0, there should exist
some reasonable transformation y → Y = T (y) of the degree of confidence for
which y = µ(x) implies Y = µ(X).

So, what are reasonable transformations of the degree of confidence?
One way to measure the degree of confidence is to have a poll: ask N experts
how many of them believe that a given value x is, e.g., small, count the number
M of whose who believe in this, and take the ratio M/N as the desired degree
y = µ(x).
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As usual with polls, the more people we ask, the more adequately we describe
the general opinion. So, to get a more accurate estimate for µ(x), it is reasonable
to ask more people. When we have a limited number of people to ask, it is
reasonable to ask top experts in the field. When we start asking more people,
we are thus adding people who are less experienced – and who may therefore
be somewhat intimidated by the opinions of the top experts. This intimidation
can be expressed in different ways:

• some new people may be too shy to express their own opinion, so they
will keep quiet; as a result, if we add A people to the original N , we sill
still have the same number M of people voting “yes”, and the new ratio

will be equal to Y =
M

N +A
, i.e., to Y = a · y, where a

def
=

N

N +A
;

• some new people will be too shy to think on their own and will vote with
the majority; so for the case when M > N/2, we will have

Y =
M +A

N +A
,

i.e., since M = y ·N , we will have

Y =
y ·N +A

N +A
= a · y + b,

where a is the same as before and b =
A

N +A
;

• we may also have a situation in which a certain proportion c of the new
people keep quiet while the others vote with the majority; in this case, we
have

Y =
M + (1− c) ·A

N +A
= a · y + b,

where a = (1− c) · A

N +A
.

In all these cases, we have a linear transformation Y = a · y + b. So, it seems
reasonable to identify reasonable transformations with linear ones. We will call
the corresponding scale-invariance L-scale-invariance (L for Linear).

What membership functions we consider. We consider symmetric prop-
erties, for which µ(−x) = µ(x), so it is sufficient to consider only positive values
x. Specifically, we properties like “small” for which the degree of confidence
decreases with x, going all the way to 0 as x increases. We will call such mem-
bership functions s-membership functions (s for small). Thus, we arrive at the
following definition.

Definition 1. By an s-membership function, we means a function µ : (0,∞)→
[0, 1] that, starting with µ(0) = 1, decreases with x (i.e., for which x1 > x2
implies µ(x1) ≥ µ(x2)) and for which lim

x→∞
= 0.
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Definition 2. We say that an s-membership function µ(x) is L-scale-invariant
if for every λ > 0, there exist values a(λ) and b(λ) for which y = µ(x) implies
Y = µ(X), where X = λ · x and Y = a(λ) · y + b(λ).

Unfortunately, this does not solve our problem: as the following result shows,
the only L-scale-invariant s-membership functions are constants;

Proposition 1. The only L-scale-invariant s-membership functions are con-
stant functions µ(x) = const.

Discussion. What does this result mean? We considered two possible types
of reasonable transformations of the degrees of confidence – which both turned
out to be linear, and this was not enough. So probably there are other rea-
sonable transformations of degrees of confidence. How can we describe such
transformations?

Clearly, if we have a reasonable transformation, then its inverse is also rea-
sonable. Also, a composition of two reasonable transformations should be a
reasonable transformation too. So, in mathematical terms, reasonable transfor-
mations should form a group.

This group should be finite-dimensional, in the sense that different trans-
formations should be uniquely determined by a finite number of parameters –
since in the computer, we can store only finitely many parameters. We also
know that linear transformations are reasonable. So, we are looking for a finite-
dimensional group of transformations from real numbers to real numbers that
contains all linear transformations. It is known (see, e.g., [10, 13, 16]) that all
such transformations are piece-wise linear, i.e., have the form

µ→ a · µ+ b

1 + c · µ
.

Thus, we arrive at the following definitions.

3 Which Symmetric Membership Functions Should
We Select: Definitions and the Main Result

Definition 3. We say that an s-membership function µ(x) is scale-invariant
if for every λ > 0, there exist values a(λ), b(λ), and c(λ) for which y = µ(x)
implies Y = µ(X), where X = λ · x and

Y =
a(λ) · y + b(λ)

1 + c(λ) · y
.

Proposition 2. The only scale-invariant s-membership functions are distending
membership functions (1).

Discussion. This result explains the empirical success of distending functions.
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4 Which Hedge Operations and Negation Oper-
ations Should We Select

Discussion. We would like hedging and negation operations y = h(x) to be
also invariant, i.e., that for each natural transformation X = T (x), there should
be a transformation Y = S(y) for which y = h(x) implies Y = h(X). Now that
we know what are natural transformations of membership degrees – they are
fractional-linear functions – we can describe this requirement in precise terms.

Definition 4. We say that a monotonic function y = h(x) from an open (finite
or infinite) interval D to real numbers is h-scale-invariant if for every fractional-
linear transformation X = T (x), there exists a fractional-linear transformation
Y = S(y) for which y = h(x) implies Y = h(X).

Proposition 3. The only h-scale-invariant functions are fractionally linear
ones.

Discussion.

• This result explains the empirical success of fractional-linear hedge oper-
ations and negation operations.

• As we show in the proof, it is sufficient to require that a fractional linear
transformation S exists only for all linear transformations T .

5 Proofs

5.1 Proof of Proposition 1.

We will prove this result by contradiction. Let us assume that the function µ(x)
is not a constant, and let us derive a contradiction.

Substituting the expressions for X, Y , and y = µ(x) into the formula Y =
µ(X) describing L-scale-invariance, we conclude that for every x and for every
λ, we have

µ(λ · x) = a(λ) · µ(x) + b(λ). (3)

It is known that monotonic functions are almost everywhere differentiable. Due
to the formula (3), if a function µ(x) is differentiable at some point x = x0, it
is also differentiable at any point of the type λ · x0 for every λ > 0 – and thus,
that it is differentiable for all x > 0.

Since the function µ(x) is not constant, there exist values x1 6= x2 for which
µ(x1) 6= µ(x2). For these values, the formula (3) has the form

µ(λ · x1) = a(λ) · µ(x1) + b(λ); µ(λ · x2) = a(λ) · µ(x2) + b(λ).

Subtracting the two equations, we get

µ(λ · x1)− µ(λ · x2) = a(λ) · (µ(x1)− µ(x2)),
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thus

a(λ) =
µ(λ · x1)− µ(λ · x2)

µ(x1)− µ(x2)
.

Since the function µ(x) is differentiable, we can conclude that the function
a(λ) is also differentiable. Thus, the function b(λ) = µ(λ · x) − a(λ) · µ(x) is
differentiable too.

Since all three functions µ(x), a(λ), and b(λ) are differentiable, we can differ-
entiate both sides of the equality (3) with respect to λ. If we substitute λ = 1,

we get x · µ′(x) = A · µ(x) + B, where we denoted A
def
= a′(1), B

def
= b′(1), and

µ′(x), as usual, indicates the derivative. Thus, x · dµ
dx

= A · µ + B. We cannot

have A = 0 and B = 0, since then µ′(x) = 0 and µ(x) would be a constant.
Thus, in general, the expression A · µ+B is not 0, so

dµ

A · µ+B
=
dx

x
.

If A = 0, then integration leads to
1

B
· µ(x) = ln(x) + c, where c0 is the

integration constant. Thus, µ(x) = B · ln(x) + B · c0. This expression has
negative values for some x, while all the values µ(x) are in the interval [0, 1].
So, this case is impossible.

If A 6= 0, then we have d(A · µ+B) = A · dµ, hence

d(A · µ+B)

A · µ+B
= A · dx

x
.

Integration leads to ln(A ·µ(x)+B) = A · ln(x)+c0. By applying exp(z) to both
sides, we get A · µ(x) +B = exp(c0) · xA, i.e., µ(x) = A−1 · exp(c0) · xA −B/A.
This expression tends to infinity either for x → ∞ (if A > 0) or for x → 0 (if
A < 0). In both cases, we get a contradiction with our assumption that µ(x) is
always within the interval [0, 1].

The proposition is proven.

5.2 Proof of Proposition 2

Substituting the expressions for X, Y , and y = µ(x) into the formula Y = µ(X)
describing scale-invariance, we conclude that for every x and for every λ, we
have

µ(λ · x) =
a(λ) · µ(x) + b(λ)

1 + c(λ) · µ(x)
. (4)

Similarly to the proof of Proposition 1, we can conclude that the function µ(x)
is differentiable for all x > 0.

Multiplying both sides of the equality (4) by the denominator, we conclude
that

µ(λ · x) + c(λ) · µ(x) · µ(λ · x) = a(λ) · µ(x) + b(λ).
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So, for three different values xi, we have the following three equations:

µ(λ · xi) + c(λ) · µ(xi) · µ(λ · xi) = a(λ) · µ(xi) + b(λ), i = 1, 2, 3.

We thus have a system of three linear equations for three unknowns a(λ), b(λ),
and c(λ). By Cramer’s rule, the solution to such a system is a rational (hence
differentiable) function of the coefficients and the right-hand sides. So, since the
function µ(x) is differentiable, we can conclude that the functions a(λ), b(λ),
and c(λ) are differentiable as well.

Since all the functions µ(x), a(λ), b(λ), and c(λ) are differentiable, we can
differentiate both sides of the formula (4) with respect to λ. If we substitute
λ = 1 and take into account that for λ = 1, we have a(1) = 1 and b(1) = c(1) =
0, we get

x · dµ
dx

= A · µ+B − C · µ2,

where A and B are the same as in the previous proof and C
def
= c′(1).

For x→∞, we have µ(x)→ 0, so µ′(x)→ 0, and thus B = 0 and

x · dµ
dx

= A · µ− C · µ2,

i.e.,
dµ

B · µ− C · µ2
=
dx

x
. (5)

As we have shown in the proof of Proposition 1, we cannot have C = 0, so
C 6= 0. One can easily see that

1

µ− B

C

− 1

µ
=

B

C

µ ·
(
µ− B

C

) =
−B

B · µ− C · µ2
.

Thus, by multiplying both sides of equality (5) by −B, we get

dµ

µ− B

C

− dµ

µ
= −B · dx

x
.

Integrating both sides, we get

ln

(
µ(x)− B

C

)
− ln(µ) = −B · ln(x) + c0.

By applying exp(z) to both sides, we get

µ(x)− B

C
µ(x)

= C0 · x−B
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for some constant C0, i.e.,

1− B/C

µ
= C0 · x−B ,

hence
B/C

µ
= 1− C0 · x−B

and

µ(x) =
B/C

1− C0 · x−B
.

From the condition that µ(0) = 1, we conclude that B < 0 and B/C = 1. From
the condition that µ(x) ≤ 1, we conclude that C0 < 0. Thus, we get the desired
formula

µ(x) =
1

1 + |C0| · x|B|
.

The proposition is proven.

5.3 Proof of Proposition 3

For constant functions the statement is trivial, since every constant function is
fractional-linear. Therefore, it is sufficient to prove for non-constant functions
h(x).

Similarly to the proof of Proposition 2, we can prove that the function h(x)
is differentiable. Let x ∈ D, and let λ and x0 from an open neighborhood of 1
and 0 respectively be such that λ · x ∈ D and x + x0 ∈ D. Since the function
h(x) is h-scale-invariant, there exist fractional-linear transformations for which

h(x+ x0) =
a(x0) · h(x) + b(x0)

1 + c(x0) · h(x)
(6)

and

h(λ · x) =
d(λ) · h(x) + e(λ)

1 + f(λ) · h(x)
. (7)

Similarly to the proof of Proposition 2, we can prove that the functions a(x0),
. . . , are differentiable. Similar to the proof of Proposition 2, we can differentiate
the formula (7) with respect to λ and take λ = 1, then we get:

x · h′ = D · h+ E − F · h2. (8)

Similarly, differentiating the formula (6) with respect to x0 and taking x0 = 0,
we get:

h′ = A · h+B − C · h2. (9)

Let us consider two cases: C 6= 0 and C = 0.
Let us first consider the case when C 6= 0. By completing the square, we get

h′ = A · h+B − C · h2 = Â− C · (h− h0)2 for some Â and h0, i.e.,

h′ = Â− C ·H2, (10)
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where H
def
= h−h0. Substituting h = H +h0 into the right-hand of the formula

(8), we conclude that

x · h′ = D̂ ·H + Ê − F ·H2 (11)

for some constants D̂ and Ê. Dividing (11) by (10), we get

x =
D̂ ·H + Ê − F ·H2

Â− C ·H2
, (12)

so

dx

dH
=

(D̂ − 2F ·H) · (Â− C ·H2)− (D̂ ·H + Ê − F ·H2) · (−2C ·H)

(Â− C ·H2)2
=

Â · D̂ − 2(Â · F − C · Ê) ·H + C · D̂ ·H2

(Â− C ·H2)2
. (13)

On the other hand,
dx

dH
=

1

dH

dx

=
1

Â− C ·H2
. (14)

The right-hand sides of the formulas (13) and (14) must be equal, so for all H,
we have

Â · D̂ − 2(Â · F − C · Ê) ·H + C · D̂ ·H2 = Â− C ·H2.

Since the two polynomials of H are equal, the coefficients at 1, H, and H2 must
coincide.

Comparing the coefficients at H2, we get C · D̂ = −C. Since C 6= 0, we
conclude that D̂ = −1. Comparing the coefficients at 1, we get Â · D̂ = Â,
i.e., −Â = Â and thus Â = 0. Comparing the coefficients at H and taking into
account that Â = 0, we get 0 = Â · F − C · Ê = −C · Ê. Since C 6= 0, this
implies Ê = 0. So, the formula (12) takes the form

x =
D̂ ·H − F ·H2

−C ·H2
=
D̂ − F ·H
−C ·H

.

Thus x is a fractional linear function of H, hence H (and therefore h = H+h0)
is also a fractional linear function of x.

Let us now consider the case when C = 0. In this case, h′ = A · h+ B and
x · h′ = D · h+ E − F · h2, thus

x =
x · h′

h′
=
D · h+ E − F · h2

A · h+B
.

If F = 0, then x is a fractional linear function of h(x) and hence, h is also a
fractional-linear function of x.
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So, it is sufficient to consider the case when F 6= 0. In this case, by complet-
ing the square, we can find constants D̂, h0, and B̂ for which, for H = h− h0,
we have

x · h′ = D · h+ E − F · h2 = D̃ − F ·H2 (15)

and
h′ = A · h+B = A ·H + B̂. (16)

Dividing (15) by (16), we have

x =
D̃ − F ·H2

A ·H + B̂
. (17)

Thus,

dx

dH
=

(−2F ·H) · (A ·H + B̂)− (D̂ − F ·H2) ·A
(A ·H + B̂)2

=
−A · D̂ − 2B̂ · F ·H −A · F ·H2

(A ·H + B̂)2
.

On the other hand,
dx

dH
=

1

dH

dx

=
1

A ·H + B̂
.

By equating the two expressions for the derivative and multiplying both sides
by (A ·H + B̂)2, we conclude that

−A · D̂ − 2B̂ · F ·H −A · F ·H2 = A ·H + B̂,

thus A · F = 0, A = −2B̂ · F , and −A · D̂ = B̂. If A = 0, then we have B̂ = 0,
so h′ = 0 and h is a constant – but we consider the case when the function h(x)
is not a constant. Thus, A 6= 0, hence F = 0, and the formula (17) describes x
as a fractional-linear function of H.

In both cases C 6= 0 and C = 0, we obtain an expression of x in terms of
H (hence h) that is fractional linear. Since the inverse of a fractional linear is
fractional linear, the function h(x) is also fractional linear.

The proposition is proven.
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