
University of Texas at El Paso University of Texas at El Paso

ScholarWorks@UTEP ScholarWorks@UTEP

Departmental Technical Reports (CS) Computer Science

6-2020

Approximate Version of Interval Computation Is Still NP-Hard Approximate Version of Interval Computation Is Still NP-Hard

Vladik Kreinovich
The University of Texas at El Paso, vladik@utep.edu

Olga Kosheleva
The University of Texas at El Paso, olgak@utep.edu

Follow this and additional works at: https://scholarworks.utep.edu/cs_techrep

 Part of the Computer Sciences Commons

Comments:

Technical Report: UTEP-CS-20-56

Recommended Citation Recommended Citation
Kreinovich, Vladik and Kosheleva, Olga, "Approximate Version of Interval Computation Is Still NP-Hard"
(2020). Departmental Technical Reports (CS). 1429.
https://scholarworks.utep.edu/cs_techrep/1429

This Article is brought to you for free and open access by the Computer Science at ScholarWorks@UTEP. It has
been accepted for inclusion in Departmental Technical Reports (CS) by an authorized administrator of
ScholarWorks@UTEP. For more information, please contact lweber@utep.edu.

https://scholarworks.utep.edu/
https://scholarworks.utep.edu/cs_techrep
https://scholarworks.utep.edu/computer
https://scholarworks.utep.edu/cs_techrep?utm_source=scholarworks.utep.edu%2Fcs_techrep%2F1429&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/142?utm_source=scholarworks.utep.edu%2Fcs_techrep%2F1429&utm_medium=PDF&utm_campaign=PDFCoverPages
https://scholarworks.utep.edu/cs_techrep/1429?utm_source=scholarworks.utep.edu%2Fcs_techrep%2F1429&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:lweber@utep.edu

Approximate Version of Interval Computation Is

Still NP-Hard

Vladik Kreinovich and Olga Kosheleva
University of Texas at El Paso

500 W. University
El Paso, TX 79968, USA

vladik@utep.edu, olgak@utep.edu

Abstract

It is known that, in general, the problem of computing the range of a
given polynomial on given intervals is NP-hard. For some NP-hard op-
timization problems, the approximate version – e.g., if we want to find
the value differing from the maximum by no more than a factor of 2 –
becomes feasible. Thus, a natural question is: what if instead of comput-
ing the exact range, we want to compute the enclosure which is, e.g., no
more than twice wider than the actual range? In this paper, we show that
this approximate version is still NP-hard, whether we want it to be twice
wider or k times wider, for any k.

1 Formulation of the Problem

Need for interval computations. In practice, we often need to estimate
the value of a difficult-to-measure quantity y by using its known relation y =
f(x1, . . . , xn) with easier-to-measure quantities x1, . . . , xn. This relation is usu-
ally described by a continuous function f(x1, . . . , xn).

Measurements are never 100% accurate. The measurement result x̃i is, in
general, different from the actual (unknown) value xi of the corresponding quan-
tity. Often, the only information that we have about the measurement error

∆xi
def
= x̃i − xi is the upper bound ∆i on its absolute value: |∆xi| ≤ ∆i; see,

e.g., [9]. In this case, once we know the measurement result x̃i, the only infor-
mation that we have about the actual value xi is that this value belongs to the
interval [xi, xi], where xi = x̃i −∆i and xi = x̃i + ∆i.

For different values xi from these intervals, we get, in general, different values
of y = f(x1, . . . , xn). It is therefore important to find the range of possible values
if y, i.e., find the interval

[y, y] = f([x1, x1], . . . , [xn, xn]) = {f(x1, . . . , xn) : xi ∈ [xi, xi]}. (1)

1

The problem of computing this range based on the function f(x1, . . . , xn) and
intervals [xi, xi] is known as the main problem of interval computations; see,
e.g., [4, 6, 7].

The main problem of interval computations is known to be NP-hard.
It is known that already for polynomials f(x1, . . . , xn) – i.e, for algorithms that
start with variables and constants and involve only addition, subtraction, and
multiplication – the main problem of interval computations is NP-hard. This
was first proven in [2, 3]; see also [5].

The fact that this problem is NP-hard means that – unless P = NP, which
most computer scientists believe to be impossible – no feasible algorithm can
solve all the instances of the interval computation problem. Since no feasible
algorithm can always compute the exact range, the currently used feasible al-
gorithms compute enclosures, i.e., intervals [Y , Y] that contain (enclose) the
desired range: [y, y] ⊆ [Y , Y].

What about approximate version of this problem? The main problem of
interval computation is, in effect, an optimization problem: y is the minimum
of the functions f(x1, . . . , xn) under the constrains xi ∈ [xi, xi], while y is the
corresponding maximum.

It is known that for many NP-hard optimization problems, their approximate
versions can be solved by feasible algorithms; see, e.g., [1]. For example, it
is known that the following knapsack optimization problem is NP-hard. We
are given the prices p1, . . . , pn of n items, their weights w1, . . . , wn, and the
knapsack’s capacity W . We need to find, among all selections S ⊆ {1, . . . , n}
that can fit into the knapsack (i.e., for which

∑
i∈S

wi ≤ W), the selection with

the largest possible overall price
∑
i∈S

pi. Interestingly, for every k < 1, there are

feasible algorithms for finding a selection for which the overall price is larger
than k times the maximum.

Similar algorithms are known for approximate versions of many other NP-
hard optimization problems. A natural question is: will an approximate version
of interval computations be feasible? In this paper, we show that such a version
is still NP-hard.

2 Main Result

Proposition. For any k > 1, the following problem is NP-hard:

• given: a polynomial f(x1, . . . , xn) and intervals [xi, xi], i = 1, . . . , n),

• compute an enclosure [Y , Y] for the range (1) whose width is no more than
k times larger than the width of the actual range: Y − Y ≤ k · (y − y).

Proof.

1◦. By definition, a problem is NP-hard if every problem from the class NP
can be reduced to this problem; see, e.g., [5, 8]. Thus, a usual way to prove

2

that a problem is NP-hard is to show that a known NP-hard problem P0 can be
reduced to this problem. Indeed, in this case, every problem from the class NP
can be reduced to P0, and since P0 can be reduced to our problem, we can thus
conclude that every problem from the class NP can be reduced to our problem
as well.

As a known NP-hard problem P0, we will consider the following problem:

given positive integers s1, . . . , sn find values εi ∈ {−1, 1} for which
n∑

i=1

εi ·si = 0.

Equivalently, we want to divide the given set of positive integers into two parts
whose sums are equal: the first part is formed by integers si with εi = −1, the
second part is formed by the remaining integers.

2◦. Let us start with a problem of estimating the range of the variance

v(x1, . . . , xn) =
1

n
·

n∑
i=1

x2
i −

(
1

n
·

n∑
i=1

xi

)2

(2)

when xi ∈ [−si, si]. The value of the variance is always non-negative, and 0 is
attained when all xi are 0s. Thus, the lower endpoint v of the range [v, v] of the
range of the function v(x1, . . . , xn) is equal to 0.

Here, x2
i ≤ s2i , so

1

n
·

n∑
i=1

x2
i ≤ S

def
=

1

n
·

n∑
i=1

s2i , thus v(x1, . . . , xn) ≤ S. When

the corresponding instance of problem P0 has a solution εi, then for xi = εi · si,
the value S is attained: v(x1, . . . , xn) = S. Thus, in this case, v = S.

Let us show that if the corresponding instance of the problem P0 does not

have a solution, then we have x < S − 1

4n2
. We will prove this by reduction

to a contradiction. Let us prove that if x ≥ S − 1

4n2
, then the corresponding

instance of the problem P0 has a solution. Indeed, every continuous function
attains its maximum at some point in a compact set – in particular, in a box
[−s1, s1] × . . . × [−sn, sn]. Thus, there exists a tuple (x1, . . . , xn) for which

v(x1, . . . , xn) ≥ S − 1

4n2
, thus

S ≤ v(x1, . . . , xn) +
1

4n2
. (3)

Then, we have

1

n
· s2i +

1

n
·
∑
j 6=i

s2j = S ≤ 1

n
·

n∑
i=1

x2
i −

(
1

n
·

n∑
i=1

xi

)2

+
1

4n2
.

Since x2
j ≤ s2j , we thus get

1

n
· s2i +

1

n
·
∑
j 6=i

s2j ≤
1

n
· x2

i +
1

n
·
∑
j 6=i

s2j +
1

4n2
,

3

hence
1

n
· s2i ≤

1

n
· x2

i +
1

4n2

and

x2
i ≤ s2i ≤ x2

i +
1

4n

and so

0 ≤ s2i − x2
i = s2i − |xi|2 = (si − |xi|) · (si + |xi|) ≤

1

4n
.

Here, si is a positive integer, so si ≥ 1 hence si + |xi| ≥ 1 and thus,

0 ≤ si − |xi| ≤
1

4n
.

The right-hand side is smaller than 1, so, for εi = sign(xi) (which is 1 if xi > 0,
−1 if xi < 0, and 0 if xi = 0), we get

|si · εi − xi| ≤
1

4n · (si + |xi|)
≤ 1

4n
.

Thus, ∣∣∣∣∣
n∑

i=1

si · εi −
n∑

i=1

xi

∣∣∣∣∣ ≤
n∑

i=1

|si · εi − xi| ≤ n · 1

4n
=

1

4
. (4)

Also, from (3), taking into account that x2
i ≤ s2i , we conclude that

1

n
·

n∑
i=1

s2i ≤
n∑

i=1

x2
i −

(
1

n
·

n∑
i=1

xi

)2

+
1

4n2
≤ 1

n
·

n∑
i=1

s2i −

(
1

n
·

n∑
i=1

xi

)2

+
1

4n2
,

thus (
1

n
·

n∑
i=1

xi

)2

≤ 1

4n2

hence ∣∣∣∣∣ 1n ·
n∑

i=1

xi

∣∣∣∣∣ ≤ 1

2n
,

thus ∣∣∣∣∣
n∑

i=1

xi

∣∣∣∣∣ ≤ 1

2
. (5)

From (4) and (5), we conclude that∣∣∣∣∣
n∑

i=1

si · εi

∣∣∣∣∣ ≤
∣∣∣∣∣

n∑
i=1

si · εi −
n∑

i=1

xi

∣∣∣∣∣+

∣∣∣∣∣
n∑

i=1

xi

∣∣∣∣∣ ≤ 1

4
+

1

2
< 1.

Since the sum
n∑

i=1

si · εi is an integer, this means that this integer is equal to 0,

i.e., that the values εi indeed solve the given instance of the problem P0.

4

3◦. Now, let us consider a polynomial f(x1, . . . , xn) = (v(x1, . . . , xn))N , where
N is such that (

1− 1

4n2 · S

)N

<
1

k
,

e.g.,

N =


ln(k)

− ln

(
1− 1

4n2 · S

)
+ 1.

Asymptotically, n ∼ const · n2 · S, so this polynomial is still feasible.
If the original instance of the problem P0 has a solution, then the range

[y, y] of the function f(x1, . . . , xn) is equal to
[
0, SN

]
, and thus, the width of

any enclosure [Y , Y] for this range is at least SN .
If the original instance has no solutions, then the range [y, y] is contained in[

0,

(
S − 1

4n2

)N
]

, so its width is smaller than or equal to

(
S − 1

4n2

)N

= SN ·
(

1− 1

4n2 · S

)N

<
1

k
· SN .

Since the width of the enclosure [Y , Y] is no more than k times the width of the
actual range, this width is thus smaller than SN .

So, if we had an algorithm computing such a no-more-than-k-times wider
enclosure [Y , Y], we would be able to tell whether the original instance of the
problem P0 has a solution or not: if Y − Y ≥ SN , the instance has a solution,
otherwise it does not have a solution. Thus, we reduced the NP-hard problem P0

to our problem, hence our problem is also NP-hard. The proposition is proven.

Remaining open problems. Interval computations problem is NP-hard even
if we limit ourselves to quadratic polynomials. In our proof that an approximate
version is NP-hard we used polynomials of arbitrary degrees. What is we limit
ourselves to quadratic polynomials only? Will the problem still be NP-hard for
all k?

Similar questions can be asked about other situations when computing the
exact range is NP-hard. For example, it is known that if we only know intervals
of possible values of all components aij of a matrix, then computing the range of
possible eigenvalues is NP-hard. What is we consider enclosures for this range
which are no more than k times wider than the actual range? Will the problem
still be NP-hard?

Acknowledgments

This work was supported in part by the National Science Foundation grants
1623190 (A Model of Change for Preparing a New Generation for Professional

5

Practice in Computer Science) and HRD-1242122 (Cyber-ShARE Center of Ex-
cellence).

References

[1] G Ausiello, P. Crescenzi, and M. Protasi, “Approximate solutions of NP
optimizaton problems”, Theoretical Computer Science, 1995, Vol. 150, pp. 1–
55.

[2] A. A. Gaganov, Computational complexity of the range of the polynomial
in several variables, Leningrad University, Math. Department, M.S. Thesis,
1981 (in Russian).

[3] A. A. Gaganov, “Computational complexity of the range of the polynomial
in several variables”, Cybernetics, 1985, pp. 418–421.

[4] L. Jaulin, M. Kiefer, O. Dicrit, and E. Walter, Applied Interval Analysis,
Springer, London, 2001.

[5] V. Kreinovich, A. Lakeyev, J. Rohn, and P. Kahl, Computational Complex-
ity and Feasibility of Data Processing and Interval Computations, Kluwer,
Dordrecht, 1998.

[6] G. Mayer, Interval Analysis and Automatic Result Verification, de Gruyter,
Berlin, 2017.

[7] R. E. Moore, R. B. Kearfott, and M. J. Cloud, Introduction to Interval
Analysis, SIAM, Philadelphia, 2009.

[8] C. Papadimitriou, Computational Complexity, Addison-Wesley, Reading,
Massachusetts, 1994.

[9] S. G. Rabinovich, Measurement Errors and Uncertainties: Theory and Prac-
tice, Springer, New York, 2005.

6

	Approximate Version of Interval Computation Is Still NP-Hard
	Recommended Citation

	tmp.1592330083.pdf.ebv6U

