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Neural Networks

Vladik Kreinovich
Department of Computer Science
University of Texas at El Paso, El Paso, TX, USA
vladik@utep.edu

Definition

A neural network is a general term for machine learn-
ing tools that emulate how neurons work in our
brains.

Ideally, these tools do what we scientists are sup-
posed to do: we feed them examples of the observed
system’s behavior, and hopefully, based on these ex-
amples, the tool will predict the future behavior of
similar systems. Sometimes they do predict – but in
many other cases, the situation is not so simple.

The goal of this entry is to explain what these tools
can and cannot do – without going into too many
technical details.

How Machine Learning Can Help

What Are the Main Problems of Science and
Engineering
The main objectives of science and engineering are:

• to determine the current state of the world,

• to predict the future behavior of different sys-
tems and objects, and,

• if it is possible to affect this behavior, to find the
best way to do it.

For example, in geosciences:

• we want to find mineral deposits – oil, gas, water,
etc.

• we want to be able to predict potentially danger-
ous activities such as earthquakes and volcanic
eruptions, and

• we want to find the best ways to extract minerals
that would not lead to undesirable side effects
such as pollution or triggered seismic activity.

Let us describe the three classes of general prob-
lems in precise terms.

To determine the current state of the world, we
can use the measurement results x. Based on these
measurement results, we want to describe the actual
state y of the system. For example, to find the geolog-
ical structure y in a certain area – e.g., the density
(and/or speed of sound) values at different depths
and at different locations, we can use the seismic data
x, both passive (measuring seismic waves generated
by actual earthquakes) and active (measuring seis-
mic signals generated by specially set explosions or
vibrations).

To predict the future state y of the system – or at
least the future values y of the quantities of interest
– we can use the information x about the current and
past state of the system. For example, by using the
accurate GPS measurements x, we can find how fast
the continents drifts, and thus, predict their future
location y.

To find the best control y, we can use all the known
information x about the current state of the system.
For example, based on our knowledge of the geologi-
cal structure x of the area, we would like to find the
parameters (e.g., pressure) y of the fracking technique
that would leave the pollution below the desired level.

Sometimes We Know the Equations, Some-
times We Don’t
In some cases, we know the equations relating the
available information x and the desired quantities y.
In some of these cases, the relation is straightforward:
e.g., simple linear extrapolation formulas enable us
to predict the future continent drift. In other cases,
the equations are not easy to solve: for example, it
is relatively easy, giving the density structure y, to
describe how the seismic signals will propagate and
what signals x to expect – but to find y based on x
(i.e., to solve the inverse problem) is often not easy.

In most cases, however, we do not know the equa-
tions relating x and y. In this, geosciences are drasti-
cally different from physics – especially fundamental
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physics – where the corresponding equations are usu-
ally known (they may be difficult to solve, as in pre-
dicting chemical properties of atoms and molecules
from Schroedinger’s equation, but they are known).

How Machine Learning Can Help: General
Case
Usually, there are cases when we know both the in-
put x and the desired output y. In other words, we
know several pairs (xi, yi) corresponding to different
situations.

Such cases are ubiquitous for prediction problems:
for example, if we are trying to predict seismic activ-
ity a week ahead, then every time a week has passed,
we have a pair (xi, yi) consisting of the measurement
results xi obtained before the passed week and the
passed week’s seismic activity yi.

Such cases are ubiquitous in control problems: ev-
ery time we do something and succeed, we get a pair
(xi, yi) consisting of the previous situation xi and of
the successful action.

Based on such pairs, machine learning tools pro-
duce an algorithm, that, given the input x, provides
an estimate for the desired output y. For example,
for prediction problems, we can use the current values
x to get some predictions of the future values y.

Producing such an algorithm usually takes time –
but once the algorithm has been produced, it usually
works very fact.

How Machine Learning Can Help: Case When
We Know Equations.
When we know equations, the difficulty is usually
in solving the inverse problem – finding y based on
x. In contrast, the “forward” problem – finding x
based on y – is usually easy to solve. So, what we
can do is select several realistic examples y1, . . . , yn
of y, compute the corresponding x’s x1, . . . , xn, and
feed the resulting pairs (x1, y1), . . . , (xn, yn) into a
machine learning tool.

As a result, we get an algorithm, that given x,
produces y – i.e., that solves the inverse problem.

Limitations

There Are Limitations
So far, it may have seemed that machine learning is
a panacea, that it can solve almost all of our prob-
lems. But, of course, the reality is not always rosy.
To effectively use machine learning, we need to solve
three major problems:

• First, the ability of machine learning tools to
process multi-D data is limited. In most cases,
these tools cannot use all the measurement re-
sults that form the input xi and the output yi.
So, we need to come up with a small number of
informative characteristics. This selection is up
to us, it is difficult, and if we do not select these
characteristics correctly, we lose information –
and the machine learning program will not be
able to learn anything.

• Second, to make accurate predictions, we need to
have a large number of pairs: thousands, some-
times millions. Sometimes we have many such
pairs – e.g., when we are solving an inverse prob-
lem. But in many other important cases – e.g.,
in predicting volcanic eruptions or strong earth-
quakes – there are – thankfully – simply not that
many such events. Of course, we can add to the
days of observed eruptions days when nothing
happened, but then the machine learning pro-
gram will simply always predict “no eruption” –
and be accurate in the spectacular 99.99% of the
cases!

• Third, training a machine learning program re-
quires a lot of time, so much that often it can
only be done on a high performance computer.

The need to solve these three problems – especially
the first two – severely limits the usefulness of ma-
chine learning tools.

Let us explain, on a qualitative level, where these
problems come from.

Machine Learning Is, in Effect, a Nonlinear
Regression
Machine learning is not magic. It is, in effect, a non-
linear regression: just like linear regression enables us
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to find the coefficient of a linear dependence based on
samples, nonlinear regression enables us to find the
parameters of a nonlinear regression. For neural net-
works, such parameters are known as weights.

In many practical situations – especially in geo-
sciences – linear models provide a very crude approx-
imation. So, crudely speaking, in addition to parame-
ters describing linear terms, we also need parameters
describing quadratic terms, cubic terms, etc. The
more parameters we use, the more accurately we can
describe the actual dependence. This is similar to
how we can approximate, e.g., an exponential func-

tion exp(x) = 1 + x +
x2

2!
+ . . . by the first few terms

in its Taylor expansion: exp(x) = 1 + x + . . . +
xm

m!
(this is, by the way, how computers actually compute
exp(x)): the more terms we use, the more accurate
is the result.

We Cannot Use All the Information
And here lies the problem. The numbers of nonlin-
ear terms drastically grows with the number of in-
puts. For example, if the input x consists of m values
x = (X1, . . . , Xm), then, to describe a generic linear

dependencies Y = c0 +
m∑
i=1

ci · Xi, we need m + 1

parameters. To describe a generic quadratic depen-

dence Y = c0 +
m∑
i=1

ci · Xi +
m∑
i=1

m∑
j=1

cij · Xi · Xj , we

already need ≈ m2 parameters. This already leads to
a problem. For example, suppose that we are process-
ing images. Describing an image x means describing
the intensity Xi at each of its pixels i. A typical im-
age consists of about 1000×1000 = 106 pixels, so here
we have m ≈ 106. It is easy to store and process a
million values, but finding 1012 unknown coefficients
– even in the simplest case, when we have a system
of 1012 linear equations with 1012 unknown – is way
beyond the abilities of modern computers.

As a result, we cannot simply feed the image into
a machine learning tool – and, similarly, we cannot
simply feed the seismogram into this tool. We need
to select a few important parameters characterizing
this image (or this seismogram). And here computers
are not much help, we the scientists need to do the

selection. This explains the first problem.
It should be mentioned that the situation is not so

bad with images. Everyone knows that images can
be compressed into a much smaller size without los-
ing much information – e.g., a small-size photo on
a webpage is still quite recognizable – and modern
machine learning techniques used such methods au-
tomatically. However, for seismograms, no such no-
information-loss drastic compressions are known.

What about computation time? The more pa-
rameters we need, the more computation time we
need to find the values of these parameters. Even
if the system is linear, to find the values of q param-
eters – i.e., to solve a system of q equations for q
unknowns – we need time ≈ q3, at least as much as
we need to multiply two q × q matrices A and B –
where to compute each of q2 elements of the product
aij = ai1 ·b1j + . . .+aiq ·bqj , we need q computational
steps (and q2 · q = q3).

Even if we compress the image from a million to
m = 300 values, if we take the simplest – quadratic
– terms into account, we will need q ≈ m2 = 105

variables, so we need at least q3 ≈ 1015 computa-
tional steps. On a usual GigaHertz PC that performs
109 operations per second, this means 106 seconds –
about two weeks. And we only took into account
quadratic terms – and just like an exponential func-
tion or a sinusoid do not look like graphs of x2, real-
life dependencies are not quadratic either. So ma-
chine learning requires a lot of computation time –
often so much time that only high-performance com-
puters can do it. This explains the third problem.

We Need a Large Number of Samples
And this is not all. The more accurately we want to
predict y, the more parameters we need. How many
samples do we need? Crudely speaking, each pair
(xi, yi) with yi = (Yi1, . . . , Yir) provides r equations
Yij = f(Xi1, . . . , Xiq) for determining the unknown
parameters, for some small r. So, we need approxi-
mately as many samples as parameters. In the above
example of q ≈ 105 unknowns, we need hundreds of
thousands of example – and usually, even more. This
explains the second problem.
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There is an additional reason why we need many
pairs. The reason is that it is not enough to just train
the tool, we need to test how well the trained machine
learning tool works. For that purpose, the usual idea
is to divide the original pairs into the training set and
the testing set, train the tool on the training set only,
and then test the resulted training on the training set.

How do we know that it works well? One correct
prediction may be a coincidence. However, if we have
several good predictions, this makes us confident that
the trained model works well. So, to gain this con-
fidence, we need a significant number of such pairs.
And in many important problems, we do not have
that many pairs. For example, even if a volcano has
been very active, had 5 eruptions, there is not enough
data to confirm the model.

An Additional Problem
All the above arguments assumed that once we ar-
ranged an appropriate compression, gathered millions
of sample, and rented time on high-performance com-
puter, the machine learning tool will always succeed.
Unfortunately, this is not always the case.

It is known that, in general, prediction problems,
inverse problems, etc. are NP-hard, which means
that (unless P = NP, which most computer scien-
tists believe to be impossible) no feasible algorithm
is possible that would always solve these problems. In
other words, any feasible algorithm – and algorithms
implemented in the machine learning tools are feasi-
ble – will sometimes not work.

Good news is that computer scientists are con-
stantly inventing new algorithms, new tools. So if
you encounter such a situation, a good idea is to team
up with such a researcher. Maybe his/her new algo-
rithm will work well when the algorithms from the
software package you used did not work.

This brings us to the question of what machine
learning tools are available.

What Tools Are Available
Traditional neural networks used 3 layers of neurons.
Corresponding, the number of parameters was not
high, so while such neural networks can be easily im-
plemented on a usual PC, they are not very accu-
rate. So, if you have a few samples – not enough for

more accurate training – you can use traditional neu-
ral networks, and get some reasonable (but not very
accurate) results.

In the latest decades, the most popular are deep
neural networks, that have up to several dozen lay-
ers, and thus, a much larger number of adjustable
parameters. Often, they lead to spectacular results
and accurate predictions. However, due to the high
number of parameters, deep neural networks need
a large (sometimes unrealistically large) number of
sample pairs. For the same reason, deep neural net-
works require a lot of time to train – so much that
this training is rarely possible on a usual computer.
So, if you have a large number of samples – and you
know how to compress the original information – it
is a good idea to try to use deep learning.

There are also other efficient machine learning
tools, such as Support Vector Machine (SVM) – that
used to be the most efficient tool until deep learning
appeared – but these tools are outside the scope of
this article.

In Case You Are Curious
So how do neural networks work? An artificial neu-
ral network consists of neurons. Each neuron takes
several inputs v1, . . . , vk and returns an output u =
s(w0 + w1 · v1 + . . . + wk · vk), where wi are coeffi-
cients (“weights”) that need to be determined during
training, and s(z) is an appropriate nonlinear func-
tion. Traditional neural networks used the so-called
sigmoid functions s(z) = 1/(1+exp(−z)), while deep
neural networks use the “rectified linear” function
s(z) = max(0, z).

Neurons usually form layers:

• Neurons from the first layer use the measure-
ment results (or whatever we feed them as xi)
as inputs.

• Neurons from the second layer use outputs of the
first layer neurons as inputs, etc.

How are the coefficients wi trained? In a nutshell,
by using gradient descent – the very first optimiza-
tion method that students learn in their numerical
methods class. The main idea behind this method
is very straightforward: to do down the mountain as
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fast as possible, you follow the direction in which the
descent is the steepest. Neural networks use some
clever algorithmic tricks that help find this steepest
direction, but they do use gradient descent.

Readers interested in technical details are welcome
to read (Goodfellow et al., 2016) – at present (2020)
the main textbook on deep neural networks.

Examples of Successful Applications
Successful applications of traditional (3-layers) neu-
ral networks have been summarized in a widely cited
book (Dowla and Rogers, 1996). There have been
many interesting applications since then, especially
in petroleum engineering, where even a small im-
provement in prediction accuracy can lead to multi-
million gains. The paper (Thornhauser, 2015) pro-
vides a survey of such applications. For example,
neural neworks are efficient in classifying geological
layers based on the well log (Bhatt and Helle, 2002)
– this is one of the cases when we have a large amount
of data, sufficient to train a neural network.

Applications of deep learning are a rapidly grow-
ing research area. There is a large number of papers,
there are surveys – e.g., (Bergen at al., 2019). How-
ever, new applications and new techniques appear all
the time – this research area grows faster that surveys
can catch up. Because of this fast growth, this part of
the article is more fragmentary than comprehensive
– we will just cite examples of typical applications.

Probably the most active application areas is pro-
cessing images – e.g., satellite images. One of the
main reasons why these applications of deep learning
are most successful is that, as we have mentioned, for
images we can apply efficient almost-no-loss compres-
sion and thus, naturally prepare the data for neural
processing. A typical recent example of such an ap-
plication is (Ullo et al., 2019).

One of the most interesting applications of deep
learning to satellite images is the possibility to
predict volcanic activities based on images pro-
duced by satellites equipped with interferometric
synthetic aperture radar (InSAR) – which can de-
tect centimeter-scale deformations of Earth’s surface
(Gaddes et al., 2019).

Many examples of applications are related to solv-
ing inverse problems – since, as we have mentioned,
in this case, we can easily generate a large num-
ber of examples; see, e.g., (Araya-Polo et al., 2018),
(Mosser et al., 2018). The use of state-of-the-art ma-
chine learning techniques for solving inverse problem
has already lead to interesting discoveries. For ex-
ample, it turns out that, contrary to the previously
assumed simplified models of seismic activity – ac-
cording to which only usual (“fast”) earthquakes re-
lease the stress, a significant portion of the stress is
released through slow slip and slow earthquakes; see,
e.g., (Pratt, 2019).

Interestingly, sometimes even for the forward prob-
lem, neural networks produce results faster than the
traditional numerical techniques; see, e.g., (Moseley
at al., 2018).

The papers (Magaña-Zook and Ruppert, 2017) and
(Linville et al., 2019) uses deep learning to solve an-
other important problem: how to distinguish earth-
quakes from explosions based on their seismic waves.
This problem was actively developed in the past be-
cause of the need to distinguish nuclear weapons tests
from earthquakes. Now, the main case study is sep-
arating small earthquakes from small explosions like
quarry blasts – and in this appplication, there is a
large number of examples, which makes neural net-
works very successful.

Summary

In a nutshell, neural networks are interpolation and
extrapolation tools. When we have a large number
(xi, yi) of pairs (x, y) of related tuples of quantities,
machine learning techniques – such as neural net-
works – produce a program that, given a generic tuple
x, estimates y.

In many cases, neural networks has led to success-
ful applications in geoscience. However, neural net-
works are not a panacea.

For a neural network application to be successful,
we really need a very large number of examples –
which is not always possible in geosciences; we need
to compress the data without losing information –
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which is also often difficult in geosciences; we usu-
ally need to spend a large amount of computation
time; and we need to be patient: sometimes these
techniques work, sometimes they don’t.

We hope that this article will help geoscientists
to select problems in which all these conditions are
satisfied, and get great results by applying neural
networks! (And do not hesitate to collaborate with
computer scientists if it does not work the first time
around.)
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