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How Expert Knowledge Can Help Measurements:

Three Case Studies

Vladik Kreinovich
Department of Computer Science
University of Texas at El Paso

vladik@utep.edu

Abstract

In addition to measurement results, we often have expert estimates.
These estimates provides an additional information about the correspond-
ing quantities. However, it is not clear how to incorporate these estimates
into a metrological analysis: metrological analysis is usually based on jus-
tified statistical estimates, but expert estimates are usually not similarly
justified. One way to solve this problem is to calibrate an expert the same
way we calibrate measuring instruments. In the first two case studies, we
show that such a calibration indeed leads to useful result. The third case
study provides an example of another use of expert knowledge in mea-
surement practice: this knowledge can be used to make semi-empirical
measurement models more explainable – and thus, more reliable.

1 Introduction

Using expert knowledge is important, but how? A large amount of
information comes from measurements. However, in many areas, it is crucial to
also use expert knowledge; for example:

• With all modern medical tests and measurements, doctor’s intuition is
still crucial.

• In spite of all the successes of self-driving cars, it is still not possible to
fully replace a human driver.

It is therefore important to supplement measurement results with expert esti-
mates.

And this is a big problem for metrology, because in metrology, we are accus-
tomed to work with statistically justified estimates, while expert estimates are
not similarly justified.

So how can expert knowledge help measurements? In measurement
practice:

1



• we come up with a parametric model of the corresponding class of phe-
nomena,

• we test this model – to make sure that it provides an adequate description
of the phenomena, and

• we use measurements to estimate the parameters corresponding to a given
situation.

How can experts help?

• experts can provide such a model, and

• experts can provide estimates of the corresponding parameters.

Why is this useful? In terms of a model: the currently used model often comes
from a semi-empirical study. Such curve-fitting models are not very convincing,
this can be over-fitting. Experts’ knowledge and intuition can help separate
explainable models from curve-fitting results.

In terms of expert estimations: experts may not be accurate as measure-
ments, but they are often faster and cheaper to use. They also supplement
measurement results, this making the resulting estimates more accurate.

But how to incorporate expert knowledge into a metrological framework. From
the common sense viewpoint, expert knowledge is useful. But how can include
their estimates into a metrological framework, with its precise justifications?

A natural idea is to treat an expert as a measuring instrument: to calibrate
the expert. Thus, we can get a statistically justified estimate for the accuracy
of expert-generated numbers.

Moreover, we can use this calibration to improve the expert’s estimates. This
is similar to how, once know the instrument’s bias, we can subtract it and get
more accurate results.

Three case studies. To illustrate the above general ideas, we provide three
case studies.

• In the first case study, we show that application of usual linear calibration
to experts can be helpful.

• In the second case study, we provide an example of useful non-linear cali-
bration.

• The third case study explains how expert knowledge can make semi-
empirical models more convincing.

Comment. Preliminary results of the three test studies first appeared in [3, 37,
39].
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2 First Case Study: Measurement-Type “Cali-
bration” of Expert Estimates Improves Their
Accuracy and Their Usability – Pavement En-
gineering

Experts are often used for estimation. Sometimes, experts are used be-
cause no measuring instruments can replace these experts. For example, in
dermatology, estimates of a skilled expert are more accurate results than of any
algorithm. This is one of the main reasons why, in spite of numerous expert
systems, human doctors are still needed and still valued.

In other cases, in principle, we can use automatic systems, but experts are
still much cheaper to use. An example of such situation is pavement engineering.
In principle, we can use an expensive automatic vision-based system to gauge
the condition of the pavement. However, it is much cheaper – and faster – to
use human raters.

Expert estimates are often very imprecise. Humans rarely have a skill of
accurately evaluating the values of different quantities. For example, it is well
known that humans drastically overestimate small probabilities. Correspond-
ingly, humans underestimate the probabilities which are close to 1; see, e.g., [14]
and references therein.

Since most people’s estimates are very inaccurate, it is difficult to find good
expert estimators. It is well known that there is a high competition to get into
medical schools. Even in pavement engineering, finding a good rater is difficult.

It is difficult to find good experts: example from pavement engineer-
ing. According to a current standard [7], the condition of a pavement is evalu-
ated by using a special index. This Pavement Condition Index (PCI) combines
different possible pavement faults. To gauge the accuracy of a rater candidate,
many locations across the US use criteria developed by the Metropolitan Trans-
portation Commission (MTC) of California [26].

A crucial part of the rater certification is a field survey exam. In this exam,
a rater evaluates 24 test sites that have been previously evaluated by expert
raters. Candidate’s PCI values are then compared with the PCI values of the
expert rater. The expert’s values are taken as the ground truth (GT). To certify,
the rater must satisfy the following two criteria:

• at least for 50% of the evaluated sites, the difference should not exceed 8
points, and

• at least for 88% of the evaluated sites, the difference should not exceed 18
points.

MTC provided a sample of 18 typical candidates. Out of these candidates, only
5 (28%) satisfy both criteria and thus, pass the exam and can be used as raters.
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Problems.

• What can we do to increase the number of available experts?

• And for those who have been selected as experts, can we improve the
accuracy of their estimates?

Calibration. We are interested in situations when expert serve, in effect, as
measuring instruments.

Measuring instruments are usually much more accurate then human experts.
Still, they are sometimes not very accurate. Even when they are originally
reasonably accurate, in time, their accuracy decreases.

When the measuring instrument becomes not very accurate, we do not nec-
essarily throw it away. For example, before we step on the scales, they already
show 10 pounds. We do not necessarily throw away these scales: instead, we
adjust the starting point.

When a household device for measuring blood pressure starts producing
weird results, the manufacturers do not advise the customers to throw it away
and to buy a new one, they advise the customers to come to a doctor’s office
and to calibrate the customer’s instrument.

In general, calibration is a routine procedure for measuring instruments; see,
e.g., [38]. We measure the same quantities:

• by using our measuring instruments – resulting in the values x1, . . . , xn,
and

• by using a much more accurate (“standard”) measuring instrument – re-
sulting in the values s1, . . . , sn.

In many cases – like in the above scales example – the main problem is the bias.
We compensate for the bias by subtracting the estimated value. The resulting
corrected values xi + b are closer to the ground truth si. A reasonable way to

estimate the bias is to use the Least Squares method [38, 41]:
n∑
i=1

((xi+b)−si)2 →

min .
In some cases, there is also a relative systematic error, when each value

is under- or over-estimated by a certain percentage. To compensate for this
under- and over-estimation, we need to multiply by an appropriate constant.
For example if all the values are overestimated by 10%, then each ground truth
value si is replaced by the biased value si + 0.1 · si = 1.1 · si. To compensate
for this relative bias, we thus need to multiply all the measurement results by
1/1.1.

In general, we need to replace the original measurement results xi by cor-
rected values a · xi for some a. In general, to compensate for both absolute and
relative biases, we replace xi with a · xi + b.

The values a and b can be found by the Least Squares method:

n∑
i=1

((a · xi + b)− si)2 → min .
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After that, instead of using the original measurement result x produced by the
measuring instrument, we calibrate it into a more accurate value

x′ = a · x+ b.

In addition to such a linear calibration, it is sometimes beneficial to use
non-linear calibration. Sometimes, a quadratic or cubic calibration is used –
which leads to more accurate measurement results. In many practical situations,

it is also beneficial to use fractional-linear re-scaling x′ =
a · x+ b

1 + c · x
; see, e.g.,

[16, 17, 18, 24, 25, 28].

Idea: let us calibrate experts. A natural idea is that since experts serve as
measuring instruments, we can similarly calibrate the experts. Namely, instead
of using the original expert estimates:

• we first re-scale the original expert estimates in accordance with the ap-
propriate calibration function, and then

• we use these re-scaled values instead of the original expert estimates.

As a result – just like for measuring instruments – we will hopefully get more
accurate estimates.

In some situations, when for some experts, their original estimates were not
very accurate, we may end up with re-scaled estimates of acceptable quality, so
we can use them.

Such calibration is indeed helpful. A good example of the efficiency of
such calibration is expert’s estimations of small probabilities. According to
Kahneman and Tversky [?], these estimates ei are way off.

However, the values e′i = a · sin2(b · ei) are much more accurate; see, e.g.,
[19, 20, 21, 22]. Namely, for pi < 20%:

• the worst-case difference between the original estimates ei and the actual
probabilities was 8.6% – more than 40% of the original probability value
– while

• the worst-case difference between the re-scaled estimates e′i and the prob-
abilities pi is 0.7% – which is 3.5% of the original probability value, and
is, thus, an order of magnitude more accurate.

We applied our idea to pavement engineering. We started with the 18
rater candidates from the original MTC sample. In the original test, only five
of these candidates passed the exam: rater candidates R6, R8, R9, R14, and
R15.

Originally, we compare this rater’s ratings ri with the 24 corresponding
ground truth values si. Instead, we first found the values a and b that minimize

the sum of the squares
24∑
i=1

((a · ri + b)− si)2. Then, we used the re-scaled values

r′i = a · ri + b to compare with the ground truth.
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As a result, more experts are selected. Based on the re-scaled ratings,
four more candidates passed the test: candidates R1, R3, R5, and R11. This
means that these four folks can now be used for rating pavement conditions.

Of course, instead of using their original ratings ri, we first re-scale them to
r′i = a · ri + b for this rater’s a and b. As a result, we can accept 9 raters. Thus,
the acceptance rate is now no longer 5/18 ≈ 28%, it is 9/18 = 50%.

For most originally selected experts, re-scaling leads to more accurate
estimates. After re-scaling, one of the originally accepted candidates – R9 –
no longer fits. For this rater, we use his original ratings.

For the remaining four originally selected raters, re-scaling improves the
accuracy of their estimates:

• for R6, the mean square rating error decreases from 11.21 points to 10.01
points – a decrease of 9.9%;

• for R8, the mean square rating error decreases from 10.00 points to 8.66
points – a decrease of 6.4%;

• for R14, the mean square rating error decreases from 8.62 to 6.95 points
– a decrease of 19.4%; and

• for R15, the mean square rating error decreases from 6.47 points to 6.21
points – a decrease of 4.0%.

Comment. Similarly good results were consistently achieved for several other
groups of rater candidates.

3 Second Case Study: Relationship Between
Measurement Results and Expert Estimates
of Cumulative Quantities, on the Example of
Pavement Roughness

Cumulative quantities. Many physical quantities can be measured directly:
e.g., we can directly measure mass, acceleration, force. However, we are often
interested in cumulative quantities that combine values corresponding to dif-
ferent moments of time and/or different locations. For example, when we are
studying public health or pollution or economic characteristics, we are often in-
terested in characteristics describing the whole city, the whole region, the whole
country.

Formulation of the problem. Cumulative characteristics are not easy to mea-
sure. To measure each such characteristic, we need to perform a large number
of measurements, and then to use an appropriate algorithm to combine these
results into a single value.
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Such measurements are complicated. So, we often have to supplement the
measurement results with expert estimates. To process such data, it is desirable
to describe both estimates in the same scale:

• to estimate the actual value of the corresponding quantity based on the
expert estimate, and

• vice versa, to estimate the expert estimate based on the actual value of
the quantity.

Case study: estimating pavement roughness. Estimating road roughness
is an important problem. Indeed, road pavements need to be maintained and
repaired. Both maintenance and repair are expensive. So, it is desirable to
estimate the pavement roughness as accurately as possible.

• If we overestimate the road roughness, we will waste money on “repairing”
an already good road.

• If we underestimate the road roughness, the road segment will be left
unrepaired and deteriorate further.

As a result, the cost of future repair will skyrocket.
The standard way to measure the pavement roughness is to use the Interna-

tional Roughness Index (IRI); see, e.g., [6, 9, 10, 40]. This measure of roughness
is recommended by the US standards [6, 9, 10].

Crudely speaking, IRI describes the effect of the pavement roughness on a
standardized model of a vehicle. Measuring IRI is not easy, because the real
vehicles differ from this standardized model. As a result, we measure roughness
by some instruments and use these measurements to estimate IRI. For example,
we can:

• perform measurements by driving an available vehicle along this road seg-
ment,

• extract the local roughness characteristics from the effect of the pavement
on this vehicle, and then

• estimate the effect of the same pavement on the standardized vehicle.

In view of this difficulty, in many cases, practitioners rely on expert estimates
of the pavement roughness. The corresponding measure – estimated on a scale
from 0 to 5 – is known as the Present Serviceability Rating (PSR); see, e.g., [5,
11].

Empirical relation between measurement results and expert esti-
mates. The empirical relation between PSR and IRI is described by the for-
mula:

PSR = 5 · exp(−0.0041 · IRI).

This formula was first proposed by B. Al-Omari and M. Darter in [4], and it
still remains actively used in pavement engineering; see, e.g., [8, 11, 34, 35]. It
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works much better than many previously proposed alternative formulas, such
as

PSR = a+ b ·
√

IRI

proposed in [27]. However, it is not clear why namely this formula works so
well.

What we do in this section. We propose a possible explanation for the above
empirical formula. This explanation will be general: it will apply to all possible
cases of cumulative quantities.

We will come up with a general formula y = f(x) that describes how a
subjective estimate y of a cumulative quantity depends on the result x of its
measurement.

As a case study, we will use gauging road roughness.

Main idea. In general, the numerical value of a subjective estimate depends on
the scale. In road roughness estimates, we usually use a 0-to-5 scale. In other
applications, it may be more customary to use 0-to-10 or 0-to-1 scales.

A usual way to transform between the two scales is to multiply all the values
by a corresponding factor. For example, to transform from 0-to-10 to 0-to-1
scale, we multiply all the values by λ = 0.1. In other transitions, we can use
transformations y → λ · y with different re-scaling factors λ.

There is no major advantage in selecting a specific scale. So, subjective
estimates are defined modulo such a re-scaling transformation y → λ · y.

At first glance, the result of measuring a cumulative quantity may look
uniquely determined. However, a detailed analysis shows that there is some
non-uniqueness here as well. Indeed, the result of a cumulative measurement
comes from combining values measured at different moments of time and/or
values corresponding to different spatial locations. For each individual measure-
ment, the probability of a sensor’s malfunction may be low. However, often, we
perform a large number of measurements. So, some of them bound to be caused
by such malfunctions and are, thus, outliers.

It is well known that even a single outlier can drastically change the average.
So, to avoid such influence, the usual algorithms first filter out possible outliers.
This filtering is not an exact science; we can set up slightly different thresh-
olds for detecting an outlier, slightly different threshold for allowed number of
remaining outliers, etc.

We may get a computation result that only takes actual signals into account.
With a different setting, we may get a different result, affected by a few outliers.

Let’s denote the average value of an outlier is L and the average number of
such outliers is n. Then, the second scheme, in effect, adds a constant n · L to
the cumulative value computed by the first scheme.

Yes, there is also some random deviation. However, when the number n
is reasonably large, then, due to the Large Numbers theorem, these deviations
average out and we get approximately the mean value (see, e.g., [41]) – just like
when we flip a coin many (N) times, the overall number of times when it falls
head will be close to 0.5 ·N.
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So, the measured value of a cumulative quantity is defined modulo an addi-
tion of some value:

x→ x+ a for some constant a.

Motivation for invariance. We do not know exactly what is the ideal thresh-
old, so we have no reason to select a specific shift as ideal. It is therefore
reasonable to require that the desired formula y = f(x) not depend on the
choice of such a shift, i.e., that the corresponding dependence not change if we
simply replace x with x′ = x+ a.

Of course, we cannot just require that f(x) = f(x + a) for all x and all a.
Indeed, in this case, the function f(x) will simply be a constant, but y increases
with x. But this is clearly not how invariance is usually defined. For example,
for many physical interactions, there is no fixed unit of time. So, formulas
should not change if we simply change a unit for measuring time: t′ = λ · t. The
formula d = v ·t relating the distance d, the velocity v, and the time t should not
change. We want to make this formula true when time is measured in the new
units. So, we may need to also appropriately change the units of other related
quantities.

In the above example, we need to appropriately change the unit for measur-
ing velocity, so that not only time units are changed, e.g., from hours to second,
but velocities are also changed from km/hour to km/sec.

So, if we re-scale x, the formula y = f(x) should remain valid if we appro-
priately re-scale y. As we have mentioned earlier, possible re-scalings of the
subjective estimate y have the form y → y′ = λ ·y. Thus, for each a, there exists
λ(a) (depending on a) for which y = f(x) implies that y′ = f(x′), where

x′
def
= x+ a and y′

def
= λ · y.

Definition. A monotonic function f(x) is called unit-invariant if for every real
number a, there exists a positive real number λ(a) for which, for each x and y:

• if y = f(x),

• then y′ = f(x′), where x′
def
= x+ a and y′

def
= λ(a) · y.

Proposition. A function f(x) is unit-invariant if and only if it has the form

f(x) = C · exp(−b · x) for some C and b.

Comment. For road roughness, this result explains the empirical formula.

Proof. It is easy to check that every function y = f(x) = C · exp(−b · x) is
indeed unit-invariant.
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Indeed, for each a, we have

f(x′) = f(x+ a) = C · exp(−b · (x+ a)) =

C · exp(−b · x− b · a) = λ(a) · C · exp(−b · x).

Here we denoted λ(a)
def
= exp(−b · a). Thus here, indeed, y = f(x) implies that

y′ = f(x′).
Vice versa, let us assume that the function f(x) is unit-invariant. Then, for

each a, the condition y = f(x) implies that y′ = f(x′), i.e., that λ(a) · y =
f(x+ a). Substituting y = f(x) into this equality, we conclude that f(x+ a) =
λ(a) · f(x). It is known (see, e.g., [2]) that every monotonic solution of this
functional equation has the form

f(x) = C · exp(−b · x) for some C and b.

The proposition is proven.

Conclusions of this section. In pavement engineering, it is important to ac-
curately gauge the quality of road segments. Such estimates help us decide how
to best distribute the available resources between different road segments. So,
proper and timely maintenance is performed on road segments whose quality has
deteriorated. Thus, to avoid future costly repairs of untreated road segments.

The standard way to gauge the quality of a road segment is International
Roughness Index (IRI). It requires a large amount of costly measurements. As a
result, it is not practically possible to regularly measure IRI of all road segments.
So, IRI measurements are usually restricted to major roads.

For local roads, we need to an indirect way to estimate their quality. To
estimate the quality of a road segment, we combine user estimates of different
segment properties into a single index known as Present Serviceability Rating
(PSR).

There is an empirical formula relating IRI and PSR. However, one of the
limitations of this formula is that it purely heuristic. This formula lacks a
theoretical explanation and thus, the practitioners may be not fully trusting its
results. In this section, we provide such a theoretical explanation. We hope that
the resulting increased trust in this formula will help enhance its use. Thus, it
will help with roads management.

4 Third Case Study: Normalization-Invariant
Fuzzy Logic Operations Explain Empirical
Success of Student Distributions in Describ-
ing Measurement Uncertainty

Traditional engineering approach to measurement uncertainty. Tradi-
tionally, in engineering applications, it is assumed that the measurement error
is normally distributed; see, e.g., [38].
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This assumption makes perfect sense from the practical viewpoint, it has
been shown that for the majority of measuring instruments, the measurement
error is indeed normally distributed; see, e.g., [32, 33]. It also makes sense from
the theoretical viewpoint, since in many cases, the measurement error comes
from a joint effect of many independent small components, and, according to
the Central Limit Theorem (see, e.g., [41]), for the large number of components,
the resulting distribution is indeed close to Gaussian.

Another explanation: we only have partial information about the distribu-
tion. Often, we only know the first and the second moments. The first moment
– mean – represents a bias. If we know the bias, we can always subtract it from
the measurement result. Thus re-calibrated measuring instrument will have 0
mean. So, we can always safely assume that the mean is 0. Then, the 2nd
moment is simply the variance V = σ2.

There are many distributions w with 0 mean and given σ. For example, we
can have a distribution in which we have σ and −σ with probability 1/2 each.
However, such a distribution creates a false certainty – that no other values of
x are possible. Out of all such distributions, it makes sense to select the one
which maximally preserves the uncertainty.

Uncertainty can be gauged by average number of binary questions needed
to determine x with accuracy ε. It is described by entropy S = −

∫
ρ(x) ·

log2(ρ(x)) dx; see, e.g., [13, 30]. Out of all distributions ρ(x) with mean 0 and
given σ, the entropy is the largest for normal ρ(x).

Need for heavy-tailed distributions. For the normal distribution,

ρ(x) =
1√

2π · σ
· exp

(
− x2

2σ2

)
.

The “tails” – values corresponding to large |x| – are very light, practically
negligible.

Often, ρ(x) decreases much slower, as ρ(x) ∼ c · x−α; see, e.g., [23, 36]. We
cannot have ρ(x) = c ·x−α, since

∫∞
0
x−α dx = +∞, and we want

∫
ρ(x) dx = 1.

Often, the measurement error is well-represented by a Student distribution
ρS(x) = (a + b · x2)−ν . This is true in geodesy, and in other applications as
well. This distribution is even recommended by the International Organization
for Standardization (ISO) [12].

What we do. How to explain the empirical success of Student’s distribution
ρS(x)? We show that a natural fuzzy-logic-based ([15, 31, 42]) formalization of
commonsense requirements leads to ρS(x).

Our idea: uncertainty means that the first value is possible, and the second
value is possible, etc. Let’s select ρ(x) with the largest degree to which all the
values are possible.

It is reasonable to use fuzzy logic to describe degrees of possibility. An expert
marks his/her degree by selecting a number from the interval [0, 1].

Need for normalization. For “small”, we are absolutely sure that 0 is
small: µsmall(0) = 1 and max

x
µsmall(x) = 1. For “medium”, there is no x
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with µmed(x) = 1, so max
x

µmed(x) < 1.

A usual way to deal with such situations is to normalize µ(x) into µ′(x) =
µ(x)

max
y

µ(y)
. Normalization is also performed when we get additional information.

Example: we knew that x is small, we learn that x ≥ 5. Then, µnew(x) =
µsmall(x) for x ≥ 5 and µnew(x) = 0 for x < 5, and max

x
µnew(x) < 1.

Normalization is also needed when experts use probabilities to come up with
the degrees. Indeed, the larger ρ(x), the more probable it is to observe a value
close to x. Thus, it is reasonable to take the degrees µ(x) proportional to

ρ(x): µ(x) = c · ρ(x). Normalization leads to µ(x) =
ρ(x)

max
y

ρ(y)
. Vice versa,

if we have the result µ(x) of normalizing a pdf, we can reconstruct ρ(x) as

ρ(x) =
µ(x)∫
µ(y) dy

.

How to combine degrees. For each x, we get a degree to which x is possible.
We want to compute the degree to which x1 is possible and x2 is possible, etc.
So, we need to apply an “and”-operation (t-norm) to the corresponding degrees.

A natural idea is to use normalization-invariant t-norms. We can compute
the normalized degree of confidence in a statement A&B in two different ways:

• we can normalize f&(a, b) to λ · f&(a, b);

• or, we can first normalize a and b and then apply an “and”-operation:
f&(λ · a, λ · b).

It’s reasonable to require that we get the same estimate: f&(λ · a, λ · b) =
λ · f&(a, b).

It is known that strict Archimedean t-norms f&(a, b) = f−1(f(a) + f(b))
are universal approximators; see, e.g., [29]. So, we can safely assume that f& is
strict Archimedean:

c = f&(a, b)⇔ f(c) = f(a) + f(b).

Thus, invariance means that f(c) = f(a)+f(b) implies f(λ·c) = f(λ·a)+f(λ·b).
So, for every λ, the transformation T : f(a)→ f(λ · a) is additive: T (A+B) =
T (A) + T (B).

It is known (see, e.g., [1, 2]) that every monotonic additive function is linear.
Thus, f(λ · a) = c(λ) · f(a) for all a and λ. For monotonic f(a), this implies
f(a) = C · a−α; see, e.g., [29]. So, f(c) = f(a) + f(b) implies C · c−α =
C · a−α + C · b−α, and c = f&(a, b) = (a−α + b−α)−1/α.

Deriving Student distribution. We want to maximize the degree

f&(µ(x1), µ(x2), . . .) = ((µ(x1))−α + (µ(x2))−α + . . .)−1/α.

The function f(a) is decreasing. So, maximizing f&(µ(x1), . . .) is equivalent to
minimizing the sum (µ(x1))−α + (µ(x2))−α + . . . In the limit, this sum tends to
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I
def
=
∫

(µ(x))−α dx. So, we minimize I under constrains
∫
x · ρ(x) dx = 0 and∫

x2 · ρ(x) dx = σ2, where ρ(x) =
µ(x)∫
µ(y) dy

. Thus, we minimize
∫

(µ(x))−α dx

under constraints∫
x · µ(x) dx = 0 and

∫
x2 · µ(x) dx− σ2 ·

∫
µ(x) dx = 0.

Lagrange multiplier method leads to minimizing∫
(µ(x))−α dx+ λ1 ·

∫
x · µ(x) dx+

λ2 ·
(∫

x2 · µ(x) dx− σ2 ·
∫
µ(x) dx

)
→ min .

Equating the derivative w.r.t. µ(x) to 0, we get:

−α · (µ(x))−α−1 + λ1 · x+ λ2 · x2 − λ2 · σ2 = 0.

Thus, µ(x) = (a0 + a1 · x+ a2 · x2)−ν .
For ρ(x) = c · µ(x), we get ρ(x) = c · (a0 + a1 · x + a2 · x2)−ν . So, ρ(x) =

c · (a2 · (x − x0)2 + c1)−ν . This ρ(x) is symmetric w.r.t. x0, so, the mean is
x0. We know that the mean is 0, so x0 = 0, and ρ(x) = const · (1 + a2 · x2)−ν :
exactly Student’s ρS(x)!
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A Auxiliary Results for Section 2

First auxiliary result: why 50%? In the MTC procedure, as the first
threshold, we consider the accuracy with which we should have at least 50%
of the measurements. In other words, we compare the median of the empiri-
cal distribution with some threshold. But why 50%? Why not select a value
corresponding to, say, 40% or 60%?

The only explanation that MTC provides is that selecting 50% leads to
empirically the best results. But why? Here is our explanation.

We want to find a parameter describing how distribution of expert’s approx-
imation errors. This may be the standard deviation, this may be some other
appropriate parameter. We want the relative accuracy with which we determine
this parameters to be as good as possible.

We estimate this parameter based on a frequency f that corresponds to some
probability p. It is known (see, e.g., [41]) that, after n observations, f − p is
approximately normally distributed, with 0 mean and

σ[p] =

√
p · (1− p)

n
.

We can measure the relative accuracy both:

• with respect to the probability p of the original event and

• with respect to the probability 1− p of the opposite event.
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We want both relative accuracies to be as small as possible. The relative accu-
racy with which we can find the desired probability p is equal to

σ[p]

p
=

√
1− p
n · p

=

√
1

n
·
(

1

p
− 1

)
.

Similarly, the relative accuracy with which we can find the probability 1− p is
equal to

σ[p]

1− p
=

√
p

n · (1− p)
=

√
1

n
·
(

1

1− p
− 1

)
.

We need to make sure that the largest of these two values is as small as possible.
One can check that the largest of these two values is√

1

n
·
(

max

(
1

p
,

1

1− p

)
− 1

)
=

√
1

n
·
(

1

min(p, 1− p)
− 1

)
.

This expression is a decreasing function of min(p, 1− p). Thus, for the relative
standard deviation to be as small as possible, min(p, 1− p) must be as large as
possible.

This expression grows from 0 to 0.5 when p increases from 0 to 0.5, then
decreases to 0. Thus, its maximum is attained when p = 0.5 – and this is
exactly what MTC recommends. So, we have a theoretical explanation for this
empirically successful recommendation.

Why 88%. There are many different independent reasons why an expert esti-
mate may differ from the actual value, so the expert uncertainty can be repre-
sented as a sum of a large number of small independent random variables. It
is known – see, e.g., [41] – that, under reasonable condition, the distribution of
such a sum is close to normal. This result is known as the Central Limit Theo-
rem. Thus, we can safely assume that the distribution of expert uncertainty is
normal.

For a normal distribution with 0 mean, if the probability for the value to be
within ±8 is 50%, then the probability for the value to be within ±18 is indeed
close to 88%. This explains the second part of the MTC test.

Comment. In both cases, our explanations seem to be simple and natural. We
would not be surprised if it turns out that, when selecting the corresponding
numbers, the authors of the MTC test were inspired not only by the empirical
evidence, but also by similar simple theoretical ideas.
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