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Why Most Empirical Distributions Are

Few-Modal

Julio C. Urenda, Olga Kosheleva, and Vladik Kreinovich
University of Texas at El Paso, 500 W. University

El Paso, TX 79968, USA
jcurenda@utep.edu, olgak@utep.edu, vladik@utep.edu

Abstract

In principle, any non-negative function can serve as a probability den-
sity function – provided that it adds up to 1. All kinds of processes are
possible, so it seems reasonable to expect that observed probability density
functions are random with respect to some appropriate probability mea-
sure on the set of all such functions – and for all such measures, similarly
to the simplest case of random walk, almost all functions have infinitely
many local maxima and minima. However, in practice, most empirical
distributions have only a few local maxima and minima – often one (uni-
modal distribution), sometimes two (bimodal), and, in general, they are
few-modal. From this viewpoint, econometrics is no exception: empirical
distributions of economics-related quantities are also usually few-modal.
In this paper, we provide a theoretical explanation for this empirical fact.

1 Formulation of the Problem

Empirical distributions: we expect them to be multi-modal. Continu-
ous distributions are characterized by their probability density functions ρ(x).
In principle, a probability density function can be any non-negative function,
the only condition is that the overall probability should be equal to 1, i.e., that∫

ρ(x) dx = 1.

In such situations, it is natural to expect that, in general, we will observe
generic functions with this property – e.g., functions which are random with
respect to some reasonable measure on the set of all functions. The first such
measure was Wiener measure, corresponding to random walk. Later, many
other random measures have been proposed. In most of these random measures,
almost all functions are truly random, similar to random walk – in the sense
that are very “wiggly”, they have infinitely many local maxima and minima. In
probabilistic terms, we expect the empirical probability density functions to be
multi-modal.
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Empirical distributions are mostly few-modal. In reality, empirical dis-
tributions are mostly either unimodal, or bimodal, or – in rare cases – trimodal.
In other words, they are usually few-modal; see, e.g., [1]. Why?

This is especially puzzling in econometrics. In science and engineering,
the few-modality is often easy to explain: e.g., the distributions are normal
or Gamma, or, in general, follow some theoretically justified law. But few-
modal distributions are ubiquitous also in situations where we do not have
exact equations – such as econometrics. Why?

What we do in this paper. In this paper, we provide a theoretical explanation
for the few-modality of empirical distributions.

2 Analysis of the Problem

Main idea. Of course, the space of all possible probability density functions
is infinite-dimensional, so to exactly describe each such function, we need to
describe the values of infinitely many parameters. In practice, at each moment
of time, we can only use finitely many parameters. So, we need to look into
appropriate finite-dimensional families of probability density functions – and
explain why functions from this appropriate family are few-modal.

To answer this question, let us describe natural properties of such families F
of distributions ρ(c1, . . . , cn.x). To come up with these properties, let us recall
how we gain the information about the corresponding distributions.

We want smoothness. Small changes in the values of the parameters ci
and/or small changes in x should lead to small changes in the probability density.
In other words, we want the function ρ(c1, . . . , cn, x) to be smooth.

We can combine different pieces of knowledge. Suppose that:

• one piece of evidence leads us to conclude that the distribution of the cor-
responding quantity is described by a probability density function ρ1(x),
and

• another – independent – piece of evidence – leads to a slightly different
probability density function ρ2(x).

If these were evidences about two different quantities x1 and x2, then, due
to independence, we would conclude that the distribution of the pair (x1, x2)
follows a product distribution ρ1(x1) · ρ2(x2). In our case, however, we know
that this is the same quantity, i.e., that x1 = x2. Thus, to get the resulting
distribution, we need to restrict the product distribution to the case when x1 =
x2, i.e., in precise terms, we need to consider conditional distribution under the
condition that x1 = x2. This means that we need to consider the distribution
ρ(x) = c · ρ1(x) · ρ2(x), where c is a normalizing constant – which can be
determined by the condition that

∫
ρ(x) dx = 1.
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Thus, it is reasonable to require that for every two distribution ρ1(x) and
ρ2(x) from the desired family F , their normalized product c ·ρ1(x) ·ρ2(x) should
also belongs to this family.

Knowledge can come in parts. Sometimes, we gain the knowledge right
away. In many other cases, knowledge comes in small steps. If the resulting
knowledge is described by a probability density function ρ(x), and it comes via
several (n) independent similar pieces of knowledge, each characterized by some
probability density function ρ1(x), then, based on the previous subsection, we
can conclude that ρ(x) = c · (ρ1(x))n for some constant c, i.e., that ρ1(x) =
c1 · (ρ(x))1/n for an appropriate normalizing coefficient c1.

Thus, it is reasonable to require that for every distribution ρ1(x) from the de-
sired family F and for every natural number n > 1, the normalized distribution
c1 · (ρ(x))1/n should also belong to the family.

Scale- and shift-invariance. The numerical value of a quantity depends:

• on the starting point for measuring this quantity and

• on the measuring unit.

When we change numerical values, the expression for the probability distribution
also changes. It is reasonable to require that if we simply change the starting
point and/or the measuring unit in a distribution from the family F , then we
should still get a distribution from the same family.

If we change the starting point, i.e., if we replace the original starting point
with a new one which is a units larger, then in the new units y = x − a, the
distribution described by the original probability density function ρ(x) will now
be described by the new function ρ1(y) = ρ(y + a).

Similarly, if we change the measuring unit, i.e., if we replace the original
measuring unit with a new one which is λ times larger, then in the new units
y = x/λ, the distribution described by the original probability density function
ρ(x) will now be described by the new function ρ1(y) = λ · ρ(λ · y).

Now, we are ready. Now, we are ready to formulate our main result.

3 Definitions and the Main Result

Definition 1. Let n be a natural number.

• By an n-parametric family of distributions, we mean a family

F = {f(c1, . . . , cn, x)}c1,...,cn

of probability density functions, where the values (c1, . . . , cn) go over some
set U , and the function f(c1, . . . , cn, x) is continuously differentiable over
the closure of this set.
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• We say that a family F allows combining knowledge if for very two func-
tions ρ1(x) and ρ2(x) from this family, there exists a real number c > 0
for which the product c · ρ1(x) · ρ2(x) also belongs to F .

• We say that a family F allows partial knowledge if for every function ρ(x)
from this family and for every natural number n, there exists a real number
c > 0 for which the function c · (ρ(x))1/n also belongs to F .

• We say that a family F is shift-invariant if for every function ρ(x) from
this family and for every real number a, the function ρ(x+a) also belongs
to F .

• We say that a family F is scale-invariant if for every function ρ(x) from
this family and for every real number λ > 0, the function λ · ρ(λ · x) also
belongs to F .

Proposition 1. Every function from a shift- and scale-invariant n-parametric
family of distributions that allows combining knowledge and partial knowledge
has the form ρ(x) = exp(P (x)) for some polynomial of degree ≤ n.

Corollary. Every function from a shift- and scale-invariant n-parametric family
of distributions that allows combining knowledge and partial knowledge has no
more than n− 1 local maxima and local minima.

Proof of the Corollary. Indeed, at local maxima and minima, the derivative
ρ′(x) = exp(P (x)) · P ′(x) is equal to 0, which is equivaent to P ′(x) = 0. The
derivative P ′(x) is a polynomial of degree ≤ n − 1, and such polynomials can
have no more than n− 1 zeros.

Discussion. This explain why empirical distribution are few-modal.

Proof of the main result.

1◦. Let F be a family that satisfies all the given properties. To somewhat
simplify the problem, let us consider a family G of all the functions of the type
c ·ρ(x), where c > 0 and ρ(x) ∈ F . By definition, every function from the family
F is also an element of G – to show this, it is sufficient to take c = 1.

We will prove the desired form for all the function from the class G. This
will automatically imply that all the functions from the family F also have this
property.

What is the dimension of the family G, i.e., how many parameters do we
need to specify each function from this family? To describe a function from the
family G, we need to specify:

• the value c (1 parameter), and

• the function ρ(x) ∈ F – which requires n parameters.

Thus, n + 1 parameters are sufficient, and the dimension of the family G is
≤ n+ 1.
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2◦. For the family G, the first property of the family F – allowing combining
knowledge – leads to a simpler property: that for every two functions f1(x) and
f2(x) from the family G their produc f1(x) · f2(x) also belong to G.

Indeed, the fact that each function fi(x) belongs to G means that it has
the form ci · ρi(x) for some ci > 0 and for some function ρi(x) from the family
F . Thus, the product f(x) = f1(x) · f2(x) of these functions has the from
f(x) = c1 · c2 · ρ1(x) · ρ2(x). By the property of allowing combining knowledge,
for some c > 0, the function ρ0(x) = c · ρ1(x) · ρ2(x) also belongs to the family
F . Thus, we have

f(x) =
c1 · c2
c
· (c · ρ1(x) · ρ2(x)) = c0 · ρ0(x),

where we denoted c0
def
=

c1 · c2
c

. So indeed, f(x) ∈ G.

3◦. Similarly, from the other properties of the family F , we can make the
following conclusions:

• that for every function f(x) from the family G and for every natural
number n, the function (f(x))1/n also belongs to G;

• that for every function f(x) from the family G and for every real number
a, the function f(x+ a) also belongs to G; and

• that for every function f(x) from the family G and for every real number
λ > 0, the function f(λ · x) also belongs to G.

6◦. We can simplify the problem even more if instead of the family G, we
consider the family g of all the functions of the type F (x) = ln(f(x)), where
f(x) ∈ G. To such functions, we also add the limit functions.

Adding limit cases does not increase the dimension, so the dimension of the
family g is still ≤ n+ 1.

In terms of this new family, we need to prove that all the functions from this
family are polynomials of order ≤ n.

The fact that the family G is closed under multiplication means that the
family g is closed under addition. The fact that the family G is closed under
taking the n-th root means that the family g is closed under multiplication
by 1/n for each natural number n. Together with closing under addition, this
means that for every two natural numbers m and n, the function

m

n
· F (x) =

1

n
· F (x) + . . .+

1

n
· F (x) (m times)

also belongs to the family g. In other words, for every function F (x) ∈ g and
for every rational number r, the product r ·F (x) also belongs to g. Since every
real number is a limit of rational numbers – e.g., of numbers obtained if we only
keep the first N digits in the decimal or binary expansion – and we added all
limit cases, we can conclude that r · F (x) ∈ g for all non-negative real numbers
r as well.
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One can easily show that shift- and scale-invariance properties are also sat-
isfied for the new family:

• that for every function F (x) from the family g and for every real number
a, the function F (x+ a) also belongs to g; and

• that for every function F (x) from the family G and for every real number
λ > 0, the function F (λ · x) also belongs to g.

7◦. As a final simplification, we consider the family h of all the differences
d(x) = F1(x) − F2(x) between functions from the class g. To describe each of
the functions F1(x) and F2(x), we need n + 1 parameters, so the dimension of
the new family does not exceed 2 · (n+ 1).

Since for every function F (x) ∈ g, the function 2F (x) also belongs to the
family g, we can conclude that the difference F (x) = (2F (x))−F (x) also belongs
to the family h. Thus, g ⊆ h.

The family h is also closed under addition. Indeed, if d1(x) = F11(x)−F12(x)
and d2(x) = F21(x)− F22(x) for some Fij(x) ∈ g, then

d1(x) + d2(x) = (F11(x)− F12(x)) + (F21(x)− F22(x)) =

(F11(x) + F21(x))− (F12(x) + F22(x)),

where, since g is closed under addition, the sums F11(x) + F21(x) and F12(x) +
F22(x) also belong to g. Thus, indeed, the sum d1(x) + d2(x) is a difference
between two functions from g and is, thus, an element of the family h.

We can also prove that the family h is closed under multiplication by any
real number c. Indeed, let d(x) = F1(x)− F2(x).

• If c > 0, then c · d(x) = (c · F1(x))− (c · F2(x)), where both c · F1(x) and
c · F2(x) belong to the family g.

• If c < 0, then c · F (x) = |c| · F2(x)− |c| · F1(x), where also |c| · F2(x) and
|c| · F1(x) belong to the family g.

So, the family g is closed under addition and under multiplication by any
real number – and is, thus, a linear space. Let d ≤ 2n+ 2 denote the dimension
of this linear space, and let us select a basis e1(x), . . . , ed(x). This means that
all functions from the space g have the form c1 · e1(x) + . . .+ cd · ed(x).

From the fact that the family g is shift- and scale-invariant, we can conclude
that the family h is also shift- and scale-invariant.

8◦. Shift-invariance means that for each function d(x) from the family h and for
each real number a, the function d(x+ a) also belongs to h. In particular, this
is true for the basis functions e1(x), . . . , ed(x). Thus, for each i and a, there
exist coefficients cij(a) depending on a for which

ei(x+ a) = ci1(a) · e1(x) + . . .+ cid(a) · ed(x). (1)
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In particular, for each i, if we select d different values x1, . . . , xd, then we get
the following system of d linear equations for determining the coefficients cij(a):

ei(x1 + a) = ci1(a) · e1(x1) + . . .+ cid(a) · ed(x1),

. . .

ei(xd + a) = ci1(a) · e1(xd) + . . .+ cid(a) · ed(xd).

Here, the coefficients ej(xk) are constants, so the values cij(a) are linear com-
binations of the right-hand sides ei(xk + a). Since the functions ei(x) are dif-
ferentiable, we conclude that the values cij(a) are also differentiable functions
of a.

So, both sides of the equality (1) are differentiable. Thus, we can differentiate
them with respect to a and then plug in a = 0. As a result, we get the following
system of differential equations:

e′1(x) = C11 · e1(x) + . . .+ C1d · ed(x),

. . .

e′d(x) = Cd1 · e1(x) + . . .+ Cdd · ed(x),

where Cij
def
= c′ij(0).

In other words, for the functions e1(x), . . . , ed(x), we get a system of linear
differential equations with constant coefficients. It is known that each solution
of such system is a linear coefficient of the functions

xp · exp(α · x), (2)

where p is a natural number and α is a – possible complex – eigenvalue of the
matrix Cij .

9◦. Similarly, scale-invariance means that for each function d(x) from the family
h and for each positive real number λ > 0, the function d(λ · x) also belongs to
h. In particular, this is true for the basis functions ei(x).

If we introduce an auxiliary variable X
def
= ln(x), then replacing x with

λ · x corresponds to replacing X with X + a, where a
def
= ln(λ). So, for the

correspondingly re-scaled functions Ei(X)
def
= ei(exp(X)), we conclude that for

each such function and for each real number a, the function Ei(X+a) is a linear
combination of functions E1(X), . . . , Ed(X). We already know, from Part 8 of
this proof, that this implies that each function Ei(X) is a linear combination of
the functions Xp · exp(α ·X). Thus, each function ei(x) = Ei(ln(x)) is a linear
combination of expressions

(ln(x))p · exp(α · ln(x)) = (ln(x))p · xα. (3)

One can see that the only possibility for a function to be represented both in
forms (2) and (3) is to avoid logarithms and exponential functions altogether,
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i.e., to have ei(x) equal to a linear combination of the terms xp for natural p,
i.e., to have all functions ei(x) polynomials. Thus, each function from the class
g is a polynomial, as a linear combination of d polynomials ei(x).

Since g ⊆ h, all functions from the class g are also polynomials.

10◦. What is the order of these polynomials? Let D be the order of a polynomial
F (x) from the class g. For each polynomial of order D, in general, the functions
F (x), F (x+h), F (x+2h), . . . , F (x+D ·h) are linearly independent: indeed, for
h→ 0, this is equivalent to linear independence of xD, xD−1, . . . , 1, and thus,
in the generic case, the corresponding determinant is different from 0. Since we
have D+ 1 independent functions, thus, the family g has dimension D+ 1. But
we know that the dimension of this family is ≤ n + 1. From D + 1 ≤ n + 1,
we conclude that D ≤ n. Thus, all functions F (x) = ln(f(x)) from the class g
are polynomials of order ≤ n. Hence, each function f(x) = exp(F (x)) from the
class F has the desired form.

The proposition is proven.
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