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How to Estimate the Stiffness of a Multi-Layer
Road Based on Properties of Layers:
Symmetry-Based Explanation for Odemark’s
Equation

Edgar Daniel Rodriguez Velasquez, Vladik Kreinovich, Olga Kosheleva, and
Hoang Phuong Nguyen

Abstract When we design a road, we would like to check that the current design
provides the pavement with sufficient stiffness to withstand traffic loads and climatic
conditions. For this purpose, we need to estimate the stiffness of the road based on
stiffness and thickness of its different layers. There exists a semi-empirical formula
for this estimation. In this paper, we show that this formula can be explained by
natural scale-invariance requirements.

1 Formulation of the Problem

Need to estimate stiffness of multi-layer roads. Most roads consist of several lay-
ers:

• First, there is a layer of soil – if needed, stabilized by adding lime, cement, etc.
• Then there is a layer – usually compacted – of crushed rocks.
• Finally, an asphalt or concrete layer is placed on top.

The road has to have a certain stiffness, i.e., a certain value of the modulus character-
izing this stiffness. It is therefore desirable to estimate the stiffness of the designed
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road with the layers of given thickness. In other words, we need to be able to solve
the following problem:

• we know the modulus Ei and the thickness hi of each layer;
• based on this information, we need to estimate the overall modulus E of the road.

Odemark’s equation. One of the methods for solving this problem was proposed
in 1949 by N. Odemark [4]; his formula is

E =

∑
i

hi · 3
√

Ei

∑
i

hi

3

. (3)

This formula is still in use; see, e.g., [3, 6].

Comment. The formula (3) corresponds to the usual case when different layers have
similar Poisson ratios. For situations when the Poisson ratios of different layers are
significantly different, there are more accurate versions of this formula.

How can we explain this formula. Odemark’s formula is based on a simplified
mechanical model of the pavement, where many important factors are ignored to
make a simple formula possible. In principle, several different simplifications are
possible; the formula produced by this particular simplification has been confirmed
by empirical data. How can we explain this formula?

What we do in this paper. In this paper, we provide a theoretical explanation for
this formula, an explanation based on the ideas of symmetry – namely, on the ideas
of scale-invariance.

2 Scale-Invariance: Reminder

To measure a physical quantity, we need to select a measuring unit. In some cases,
there is a physically natural unit – e.g., in the micro-world, we can use the electric
charge of an electron as a natural measuring unit for electric charges. However, in
many other situations, there is no such fixed unit. In such cases, it is reasonable to
require that the dependence between the physical properties remains the same – i.e.,
described by the same formula – if we change the measuring unit.

If we replace the original measuring unit with a unit which is λ times smaller,
then all numerical values of the quantity will be multiplied by λ : x→ λ · x. This
transformation is known as re-scaling, and invariance with respect to this transfor-
mation is known as scale-invariance. Scale invariance is ubiquitous in physics; see,
e.g., [2, 5].
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3 Towards an Explanation

Analysis of the problem. Let us first consider the simplified case when all the layers
have the same thickness. The overall stiffness E is the “average” stiffness, i.e., the
stiffness that the road would have if all its layers have the same stiffness E.

Let us denote the overall effect of n layers with stiffness E1, . . . ,En by

E1 ∗ . . .∗En,

for an appropriate combination operation a∗b. In these terms, the stiffness of the n-
layer road in which each layer has stiffness E is described by the formula E ∗ . . .∗E.
Thus, the desired overall effect E can be described by the formula

E ∗ . . .∗E = E1 ∗ . . .∗En. (2)

The air layer with 0 stiffness does not contribute to the overall stiffness, so we
should have a∗0 = a.

If we have layers of different thickness hi, then we can divide each of these layers
into parts of the same thickness, and apply the same formula (2), i.e., we get

E ∗ . . .∗E (h1 + . . .+hn times) =

E1 ∗ . . .∗E1 (h1 times)∗ . . .∗En ∗ . . .∗En (hn times). (3)

Natural properties of the combination operation a∗b. In the first approximation,
we can ignore the dependence on the order, and assume that a∗b= b∗a, i.e., assume
that the combination operation is commutative.

It is also reasonable to assume that the result of applying this operation to a 3-
layer road does not depend on which layer we start with, i.e., that we should have
a∗b∗ c = (a∗b)∗ c = a∗ (b∗ c). In other words, the combination operation should
be associative.

If we made one the layers stiffer, the stiffness of the road should increase. So, the
combination operation should be strictly monotonic: if a < a′, then

a∗b < a′ ∗b.

Small changes in Ei should lead to small changes in the overall stiffness. In math-
ematical terms, this means that the combination operation should be continuous.

Finally, we require that the combination operation be scale-invariant, i.e., that if
a ∗ b = c, then, for every λ , we should have the same relation for re-scaled values
λ ·a, λ ·b, and λ · c:

(λ ·a)∗ (λ ·b) = λ · c. (4)
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Main result. We will show that every commutative, associative, strictly monotonic,
continuous, and scale-invariant combination operation for which a ∗ 0 = a has the
form

a∗b = (ap +bp)1/p (5)

for some p > 0.

Discussion. In other words, a∗b = c is equivalent to ap +bp = cp, and, more gen-
erally, that a∗ . . .∗b = c means that ap + . . .+bp = cp. In view of the formula (3),
this means that (

∑
i

hi

)
·E p = ∑

i
hi ·E p

i ,

hence

E =

∑
i

hi ·E p
i

∑
i

hi

1/p

.

For p = 1/3, we get exactly Odemark’s formula!

4 Proof of the Main Result

1◦. Let us first prove that the operation a ∗ b has the form f ( f−1(a)+ f−1(b)) for
some monotonic function f (a). In other words, we want to prove that a ∗ b = c is
equivalent to

f−1(a)+ f−1(b) = f−1(c), (6)

or, equivalently, that f (a)∗ f (b) = f (c) is equivalent to a+b = c, i.e., that

f (a+b) = f (a)∗ f (b). (7)

Indeed, let us take f (1) def
= 1. Then, for every natural number m, we take

f (m)
def
= 1∗ . . .∗1 (m times).

In this case indeed,

f (m)∗ f (m′) = 1∗ . . .∗1 (m times)∗1∗ . . .∗1 (m′ times) =

1∗ . . .∗1 (m+m′ times) = f (m+m′), (8)

i.e., we have the desired property (7).
Due to monotonicity, for each natural number n, we have we

0∗ . . .∗0 (n times) = 0 < 0∗ . . .∗0∗1 = 1,

and
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1 = 0∗ . . .∗0∗1 < 1∗ . . .∗1 (n times).

From
0∗ . . .∗0 (n times)< 1 < 1∗ . . .∗1 (n times)

and continuity of the combination operation, we conclude that there exists a value
vn for which

vn ∗ . . .∗ vn (n times) = 1.

We will then take

f
(

1
n

)
= vn.

We will then define

f
(m

n

)
def
= f

(
1
n

)
∗ . . .∗ f

(
1
n

)
(m times).

One can check that for thus defined function f (a), we indeed always have the for-
mula (7) for rational values a and b, and by continuity, we can extend the function
f (a) to all non-negative real values a.

2◦. Let us now prove that the inverse function f−1(a) is a power function – and thus,
its inverse is also a power function.

Indeed, in terms of the formula (6), scale-invariance means that if the formula (6)
is satisfied, then we have

f−1(λ ·a)+ f−1(λ ·b) = f−1(λ · c). (9)

Let us denote p def
= f−1(a), q def

= f−1(b), r def
= f−1(c), so that a = f (p), b = f (q), and

c = f (r). Let us also denote tλ (x)
def
= f−1(λ · f (x)), so that

tλ (p) = f−1(λ · f (p)) = f−1(λ ·a),

tλ (q) = f−1(λ · f (q)) = f−1(λ ·b),

and
tλ (r) = f−1(λ · f (r)) = f−1(λ · c).

In this form, scale-invariance takes the following form: if p+ q = r, then tλ (p)+
tλ (q) = tλ (r). In other words, we have tλ (p+q) = tλ (p)+ tλ (q) for all p and q.

For integer values p = n, we thus have

tλ (1) = tλ

(
1
n

)
+ . . .+ tλ

(
1
n

)
(n times) = n · tλ

(
1
n

)
,

Thus

tλ

(
1
n

)
=

1
n
· tλ (1).

Similarly, for evert m, we have
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tλ
(m

n

)
= tλ

(
1
n

)
+ . . .+ tλ

(
1
n

)
(m times) = m · tλ

(
1
n

)
=

m
n
· tλ (1).

In other words, we conclude that

tλ (x) = x · tλ (1) (10)

for all rational x. By continuity, we can conclude that this property holds for all real
values as well.

By definition of tλ (x), the equality (10) means that f−1(λ · f (x)) = tλ (1) · x, i.e.,
that for y = f (x), for which x = f−1(y), we have

f−1(λ · y) = tλ (1) · f−1(y). (11)

It is known (see, e.g., [1]) that every continuous solution to this functional equation
has the form f−1(x) = A ·xa for some A and a. Thus, we get the desired formula for
the combination operation a∗b = f ( f−1(a)+ f−1(b)).

The result is proven.

Comment. The result from [1] can be easily proven, if instead of continuity, we make
a stronger assumption that the combination operation – and thus, the function f (a)
– is differentiable. Indeed, in this case, tλ (1) is a differentiable function of λ , as
a ratio of two differentiable functions. Thus, we can differentiate both sides of the
equality (11) by λ and take λ = 1; then, we get

x ·F ′(x) = c ·F, (12)

where F(x) def
= f−1(x), F ′(x) means the derivative, and c is the derivative of the

expression tλ (1) when λ = 1. The formula (12) can be rewritten as

x · dF
dx

= c ·F,

i.e., equivalently,
dF
F

= c · dx
x
.

Integrating both parts, we get ln(F) = c · ln(x)+C, where C is the integration con-
stant. Applying exp(z) to both sides, we get the desired power law.
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