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Abstract

In the last decades, a lot of attention has been placed on quantum
algorithms — algorithms that will run on future quantum computers. In
principle, quantum systems can use any complex-valued amplitudes. How-
ever, in practice, quantum algorithms only use real-valued amplitudes. In
this paper, we provide a simple explanation for this empirical fact.

1 Formulation of the Problem

Need for quantum computing. For many practical problems, there is still
a need for faster computations. For example, current spectacular successes of
deep learning (see, e.g., [2]) could be even more spectacular if we could process
even more data.

Computers’ ability to process information is limited, among other thing, by
the fact that all speeds are bounded by the speed of light. Even with a speed
of light, sending a signal from one side of a 30 cm-size laptop to another takes
1 nanosecond — the time during which even the cheapest of current computers
performs at least 4 operations. So, to make computations faster, it is necessary
to make computer components much smaller. Already these components — such
as memory cells — consist of a small number of molecules. If we make these
cells much smaller, they will consist of only a few molecules. To describe the
behavior of such small objects, it is necessary to take into account quantum
physics — the physics of the microworld; see, e.g., [1, 4]. Thus, computers need
to take into account quantum effects.



Successes of quantum computing. At first, computer engineers viewed
quantum effects as a nuisance — since in quantum physics, everything is prob-
abilistic, but we want computers to always produce the same correct result,
with probability 1. Because of this probabilistic character of quantum physics,
we cannot simply use the same algorithms on the quantum-level computers, we
need to come up with new algorithms, algorithms that would provide reliable
answers even in the probabilistic environment of quantum physics.

Such algorithms have been invented; see, e.g.., [3]. Interestingly, many of
them require even fewer computational steps than the usual non-quantum algo-
rithms. The two most well-known examples are:

e Grover’s algorithm that finds an element with the desired property in an
unsorted n-element array in time proportional to y/n — while non-quantum
algorithms require at least n steps, and

e Shor’s algorithm that factors large n-digit integers in time bounded by
a polynomial of n; this may sound like an academic problem until one
realizes that most existing encodings protecting our privacy and security
are based on the fact that with non-quantum algorithms, the only known
algorithms for such factorization require physically impossible exponential
time.

Main idea behind quantum computing. How come quantum computing
algorithms can be so much faster? The main explanation is that in quantum
physics, with every two states s an s’, we can also have superpositions of these
states, i.e., states of the type

a-s+a-s,
where a and @’ are complex numbers (known as amplitudes) for which
laf? + ]a’[* = 1.

Philosophers and journalists are still arguing among the example — proposed by
Nobelist Schroedinger, one of the founding fathers of quantum physics — that
we can have a composition of a dead cat and an alive cat, but for particles, such
superpositions have been experimentally observed since the early 20th century.

In particular, in a quantum computer, in addition to the usual 0 and 1 states
of every bit — which in quantum computing are denoted |0) and |1) — we can
also have superpositions of these states, i.e., states of the type

Co|0> + 01|1>,
where ¢y and ¢ are complex numbers for which
lcof” + |ea|? = 1.

A quantum system corresponding to a bit is known as an quantum bit, or qubit,
for short.



If we measure the state of the qubit, we will get 0 with probability |co|? and
1 with probability |c1|?. The fact that these probabilities should add up to 1
explains the above restriction on the coefficients.

Similarly, for 2-bit combinations, in addition to the traditional (non-quantum)
states 00, 01, 10, and 11, we can have superpositions

¢00]00) + ¢o1|00) + ¢10]00) + ¢11|11),
where cqg, Co1, C10, and c1; are complex numbers for which
lcool? + [co1|* + |e1o]® + |en|* = 1.
In general, for an n-qubit system, we can have states
€0..00]0 ... 00) + co...01]0...01) + ... + 1 1q|1...11)

characterized by a complex-valued vector

¢ =(0...00,C0...015 - - -, C1...11)-

How can this help with computations? For example, in the non-quantum
search-in-an-array algorithm, the only thing we can do is select an integer ¢ and
check whether the i-th element of the array satisfies the desired property. This
way, if we make fewer than n checks, we check fewer than n elements and we may
miss the desired element — this explains why we need at least n computational
steps in the non-quantum case.

In quantum physics, instead of asking for an element number i, we can
submit a request which is a superposition of some integers, c;|i) + c;/|?') + ...
This way, in effect, we can check several elements in one step.

This is just an idea, not an explanation of Grover’s algorithm — on the
one hand, we can check several elements, but on the other hand, if we do it
naively, the results will be probabilistic — and we want guaranteed bounds. So,
to compensate for the probabilistic character of the quantum measurements, we
need to use quite some ingenuity. Sometimes, it works — as in Grover’s and
Shor’s cases, sometimes it does not.

Unitary transformations and beyond. When we describe a bit in non-
quantum physics, what is important is that we have a system with two states.
Which of the two states is associated with 0 and which with 1 does not matter
that much. From this viewpoint, all the properties of the bit system are invariant
with respect to a swap 0 <> 1.

In the quantum case, in addition to a swap, we can also have arbitrary
unitary transformation ¢ — T'c, where T is a unitary matrix, i.e., a matrix for
which TTt = TTT = I, where I is the unit matrix, 7 def

o= T%, and 2% denotes
complex conjugate:

Jjio

(x+y-1)* dﬁf:cfydandidg\/fl.



In particular, for each qubit, we can have Walsh-Hadamard transformations
— actively used in quantum computing — in which

1 1
T0) = ﬁ|0> +\*@I1>

and 1 L
1) = 510) = 51,

Invariance means, in particular, that for any quantum algorithm that uses
states s1, s, etc., and for every unitary transformation 7', we can perform the
same computations by using instead states T'sy, T'so, etc.

Unitary transformation maps each vector form the original space into a vec-
tor from the same space, and preserves the vector’s length

P E

||(61,CQ,.. = |Cl|2—|—|02|2+...

One can also consider generalized unitary transformations, when each vector
is mapped into a vector from a possibly higher-dimensional space — as long
as this transformation preserves the lengths of all vectors. Similarly, for any
quantum algorithm that uses states s1, ss, etc., and for every generalized unitary
transformation 7', we can perform the same computations by using instead states
T'sy, T'sq, etc.

Interesting phenomenon. Many researchers have come up with many cre-
ative quantum algorithms for solving important practical problems. And there
is a general — and somewhat unexpected — feature of all these algorithms:

e while in general, we can have state with general complex values of the
coefficients ¢;, but

e in all proposed algorithms, the coefficients are real-valued!

It should be mentioned that this does not mean that we cannot use non-
real complex values in these algorithms. For example, one can see that all
probabilities remain the same if instead of the original coefficients ¢;, we use

. ef . . .
coefficients ¢, = exp(a - 1) - ¢;, where « is a real-valued constant. In particular,

if we take
T

57
we can replace all real values ¢; with purely imaginary values i - ¢;.

This possibility also follows from the fact that this transformation can be
described as ¢ — T'c, where the diagonal matrix

o =

T = diag(exp(a - i), exp(a - i),...,exp(a 1))

is, as one can easily check, unitary.

What the above empirical fact means is that it is sufficient to use only real-
valued amplitudes — in the sense that whatever we can do with complex-valued
amplitudes, we can do with real-valued amplitudes as well.



Important challenge. A natural question is: why? Why real-valued ampli-
tudes are sufficient for quantum computing?

What we do in this paper. In this paper, we provide a simple and natural
explanation for this empirical fact — thus showing that this is true not only for
all known quantum algorithms: for any future quantum algorithm, it is also
sufficient to use real-valued amplitudes.

2 Our Explanation

Main idea: 1-qubit states. Suppose that at some point, a quantum algorithm
uses a state
Co|0> + Cl|1>,

in which ¢g and ¢; are non-real complex numbers ¢y = ag+bg-i and ¢y = aq+b; -1,
i.e., for which the state has the form

(Clo +b01)|0> + (a1 + b 1)|0>

Then, we can form a related state of the 2-qubit system, with an additional
qubit:

e whose 0 state corresponds to real parts of the amplitudes and
e whose 1 state to the imaginary part:

a0\00> + b0|01> + a1|10> + b1|11>.

One can see that this transformation from the original 1-qubit state with com-
plex coefficients to a real-valued 2-qubit state preserves the length of each vector
and is, thus, generalized unitary.

2-qubit states. Similarly, we can transform a general 2-qubit state
(ao() + boo . 1)|00> + (a01 + bOl . 1)|01> + ((110 + blO . 1)‘10> + (a11 + b11 . 1)|].].>7

where a;; and b;; are real numbers, into the following real-valued state of a
3-qubit system with an additional auxiliary qubit:

a00|000>—|—b00\001> “+ao1 |010> +bo1 |011> +a10|100>—|—b10|101>—|—a11 |110> +b11 |111>.

This transformation from the original 2-qubit state with complex coefficients
to a real-valued 3-qubit state preserves the length of each vector and is, thus,
generalized unitary.

General case. In general, we can transform an arbitrary n-qubit state
(ao_“OO + bo...00 1)‘0 - 00> + (CLO_“Ol +bo..01- 1)|0 - 01> + ...+

(a1..11 + b1 11 -1)]1...11)



into the following real-valued state of an (n+1)-qubit system with an additional
auxiliary qubit:

al___11|1 e 110> + bl...11|1 e 111>

This transformation from the original n-qubit state with complex coefficients to
a real-valued (n+ 1)-qubit state preserves the length of each vector and is, thus,
generalized unitary.

Since this transformation is generalized unitary, we can implement any quan-
tum algorithm with the corresponding transformed states T'sy, T'so, ...— i.e.,
we can indeed implement the original algorithm by using states with real-valued
amplitudes only.
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