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Abstract

Many dependencies between quantities are described by power laws, in
which y is proportional to x raised to some power a. In some application
areas, in different situations, we observe all possible pairs (A, a) of the
coefficient of proportionality A and of the exponent a. In other application
areas, however, not all combinations (A, a) are possible: once we fix the
coefficient A, it uniquely determines the exponent a. In such case, the
dependence of a on A is usually described by an empirical logarithmic
formula. In this paper, we show that natural scale-invariance ideas lead
to a theoretical explanation for this empirical formula.

1 Formulation of the Problem

Power laws are ubiquitous. In many application areas, the dependence
between two quantities x and y is described by power laws

y = A · xa (1)

1



for constants a and A. Such dependencies are known as power laws.
Power laws are truly ubiquitous. Let us just give a few examples:

• power laws describe how the aerodynamic resistance force depends on the
plane’s velocity,

• they describe how the perceived signal depends on the intensity of the
signal that we hear and see,

• they describe how the mass of celestial structures – ranging from small
star clusters to galaxies to clusters of galaxies – depends on the structure’s
radius, etc.;

see, e.g., [3, 7].

Sometimes, not all power laws are possible. The parameters A and a
have to be determined from the experiment. In some application areas, all pairs
(A, a) are possible. In some other applications areas, however, not all such
pairs are possible. Sometimes, a is fixed, and A can take all possible values.
In other application areas, we have different values of A – but for each A, we
can only one have one specific value of a. One such example can be found in
transportation engineering: it describes the dependence of number y of cycles
until fatigue failure on the initial strain x; see, e.g., [2, 4, 5, 6, 8].

In many such situations, the value of a corresponding to A is determined by
the following empirical formula [2, 4, 5, 6, 8]:

a = c0 + c1 · ln(A). (2)

Comment. The case when the value a is fixed can be viewed as a particular case
of this empirical formula, corresponding to c1 = 0.

Resulting challenge. How can we explain the formula (2)?

What we do in this paper. In this paper, we provide a theoretical explanation
for this formula.

To come up with this explanation, we recall the reason why power laws
are ubiquitous in the first place – because they correspond to scale-invariant
dependencies. We then use the scale-invariance idea to explain the ubiquity of
the formula (2).

2 Power Laws and Scale Invariance: A Brief Re-
minder

Scaling. The main purpose of data processing is to deal with physical quan-
tities. However, in practice, we only deal with the numerical values of these
quantities.
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What is the difference? The difference is that to get a numerical value,
we need to select a measuring unit for measuring the quantity. If we replace
the original measuring unit with a new one which is λ times smaller, then all
numerical values are multiplied by λ: x→ X = λ · x. For example, if we move
from meters to centimeters, all the numerical values will be re-scaled: multiplied
by 100, e.g., 1.7 m becomes 1.7 · 100 = 170 cm.

Scale-invariance. In many application areas, there is no fixed measuring unit,
the choice of the measuring unit is rather arbitrary. In such situations, it is
reasonable to require that the dependence y = f(x) between the quantities x
and y not depend on the choice of the unit.

Of course, this does not mean that y = f(x) imply y = f(X) = f(λ · x) for
the exact same function f(x) – that would mean that f(λ · x) = f(x) for all x
and λ, i.e., that f(x) is a constant and thus, that there is no dependence.

What we need to do to keep the same dependence is to accordingly re-scale
y, to Y = µ · y for some µ depending on λ. For example, the area y of a
square is equal to the square of its size y = x2. This formula is true if we
use meters to measure length and square meters to measure area. The same
formula holds if we use centimeters instead of meters – but then, we should use
square centimeters instead of square meters. In this case, λ = 100 corresponds
to µ = 10000.

So, we arrive at the following definition of scale-invariance: for every λ > 0
there exists a value µ > 0 for which, for every x and y, the relation y = f(x)
implies that Y = f(X) for X = λ · x and Y = µ · y.

Scale-invariance and power laws. It is easy to check that every power law
is scale-invariant. Indeed, it is sufficient to take µ = λa. Then, from y = A · xa
we get λa · y = λa ·A · xa = a · (λ · x)a, i.e., indeed Y = f(X).

It turns out that, vice versa, the only continuous scale-invariance dependen-
cies are power laws; see, e.g., [1]. For differentiable functions f(x), this can be
easily proven. Indeed, by definition, scale-invariance means that

µ(λ) · f(x) = f(λ · x). (3)

Since the function f(x) is differentiable, the function

µ(λ) =
f(λ · x)

f(x)

is also differentiable, as the ratio of two differentiable functions. Since both
functions f(x) and µ(λ) are differentiable, we can differentiate both sides of the
equality (3) with respect to λ:

µ′(λ) · f(x) = x · f ′(λ · x),

where f ′, as usual, means the derivative. In particular, for λ = 1, we get

µ0 · f(x) = x · f ′(x), where we denoted µ0
def
= µ′(1), i.e.,

µ0 · f = x · df
dx
.
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We can separate the variables x and f is we divide both sides by x · f and
multiply both sides by dx, then we get

df

f
= µ0 ·

dx

x
.

Integrating both sides, we get ln(f) = µ0 · ln(x) + c, where c is the integration
constant. Thus, for f = exp(ln(f)), we get

f(x) = exp(µ0 · ln(x) + c) = A · xa,

where we denoted A
def
= exp(c) and a

def
= µ0.

3 Main Idea and Resulting Explanation

Main idea. Since, in principle, for the corresponding application areas, we can
have different values A and a, this means that the value of the quantity y is not
uniquely determined by the value of the quantity x, there must be some other
quantity z that influences y. In other words, we should have

y = F (x, z). (4)

for some function F (x, z). Different situations – i.e., different pairs (A, a) – are
characterized by different values of the auxiliary quantity z.

Main assumption. The very fact that for each fixed z, the dependence of y
on x is described by a power law means that when the value of z is fixed, the
dependence of y on x is scale-invariant.

It is therefore reasonable to conclude that, vice versa, for each fixed value x,
the dependence of y on z is also scale-invariant.

This assumption leads to the desired explanation of the above empiri-
cal formula. Let us show that this assumption indeed explains the formula (2).

Indeed, the fact that for each z, the dependence of y on x is described by
the power law, with coefficients A and a depending on z, can be described as

F (x, z) = A(z) · xa(z). (5)

Similarly, the fact that the dependence of y on z is scale-invariant means that
for each x, the dependence of y on z can also described by the power law, with
the coefficients depending on x:

F (x, z) = B(x) · zb(x), (6)

for appropriate coefficients B(x) and b(x). By equating two different expressions
(5) and (6) for F (x, z), we conclude that

A(z) · xa(z) = B(x) · zb(x) (7)
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for all x and z.
In particular, for x = 1, the formula (7) implies that

A(z) = B(1) · zb(1). (8)

Similarly, for z = 1, the formula (7) implies that

B(x) = A(1) · xa(1). (9)

Substituting expressions (8) and (9) into the formula (7), we conclude that

B(1) · zb(1) · xa(z) = A(1) · xa(1) · zb(x). (10)

In particular, for x = e, we get

B(1) · zb(1) · ea(z) = A(1) · ea(1) · zb(e),

hence

exp(a(z)) =
A(1) · exp(a(1))

B(1)
· zb(e)−b(1). (11)

From the formula (8), we conclude that

zb(1) =
A

B(1)
,

and thus,

z =
A1/b(1)

B(1)1/b(1)
. (12)

Substituting the expression (12) into the formula (11), we conclude that

exp(a) =
A(1) · exp(a(1))

B(1)
· 1

B(1)(b(e)−b(1))/b(1)
·A(b(e)−b(1))/b(1),

i.e., that exp(a) = C0 · Ac1 for some values C0 and c1. Taking logarithms of
both sides, we now get the desired dependence a = c0 + c1 · ln(A), where we

denoted c0
def
= ln(C0).

So, we indeed have the desired derivation.
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