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Abstract

In many practical situations, we need to optimize the objective func-
tion under fuzzy constraints. Formulas for such optimization are known
since the 1970s paper by Richard Bellman and Lotfi Zadeh, but these
formulas have a limitation: small changes in the corresponding degrees
can lead to a drastic change in the resulting selection. In this paper, we
propose a natural modification of this formula, a modification that no
longer has this limitation. Interestingly, this formula turns out to be re-
lated for formulas for skewed (asymmetric) generalizations of the normal
distribution.

1 Formulation of the Problem

Need for optimization under constraints. Whenever we have a choice,
we want to select the alternative which is the best for us. The quality of each
alternative a is usually described by a numerical value f(a). In these terms, we
want to select the alternative aopt for which this numerical value is the largest
possible:

f(aopt) = max
a

f(a). (1)

Often, not all theoretically possible alternatives are actually possible, there
are some constraints. For example, suppose we want to drive from point A to
point B in the shortest possible time, so we plan the shortest path – but it
may turn out that some of the roads are closed, e.g., due to an accident, or to
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extreme weather conditions, or to some public event. In such situations, we can
only select an alternative that satisfies these constraints.

Let us describe this situation in precise terms. Let A denote the set of all
actually available alternatives – i.e., all alternatives that satisfy all the given
constraints. In this case, instead of the original unconstrained optimization
problem (1), we have a modified problem: we need to select an alternative
aopt ∈ A for which the value of the objective function f(a) attains its largest
possible value on the set A:

f(aopt) = max
a∈A

f(a). (2)

Need for optimization under fuzzy constraints. The above formulation
assumes that we know exactly which alternatives are possible and which are
not, i.e., that the set A of possible alternatives is crisp.

In practice, this knowledge may come in terms of words from natural lan-
guage. For example, you may know that it is highly probable that a certain
alternative a will be possible. A natural way to describe such knowledge in pre-
cise terms is to use fuzzy logic – technique specifically designed by Lotfi Zadeh
to translate imprecise (“fuzzy”) knowledge from natural language to numbers;
see, e.g., [3, 6, 10, 11, 12, 15]. In this technique, to each alternative a, we assign
the degree µ(a) ∈ [0, 1] to which this alternative is possible:

• degree µ(a) = 1 means that we are absolutely sure that this alternative is
possible,

• degree µ(a) = 0 means that we are absolutely sure that this alternative is
not possible,

• and degrees between 0 and 1 indicate that we have some – but not full –
confidence that this alternative is possible.

How can we optimize the objective function f(a) under such fuzzy constraints?

Bellman-Zadeh approach: a brief reminder. The most widely used ap-
proach to solving this problem was proposed in a joint paper [2] that Zadeh
wrote in collaboration with Richard Bellman, one of the world’s leading author-
ities in optimization.

Their main idea was to explicitly say that what we want is an alternative
which is possible and optimal. We know the degree µ(a) to which each alterna-
tive is possible. To describe to the degree µopt(a) to which an alternative a is
optimal, Bellman and Zadeh proposed to use the following formula:

µopt =
f(a)−m
M −m

, (3)

where m is the absolute minimum of the function f(a) and M is its absolute
maximum.
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For example, we can define m and M by considering all alternatives for
which there is at least some degree of possibility, i.e., for which µ(a) > 0:

m = min
a:µ(a)>0

f(a), M = max
a:µ(a)>0

f(a). (4)

Once we know the degrees µ(a) and µopt(a) that the alternative a is pos-
sible and that this alternative is optimal, to find the degree d(a) to which the
alternative a is possible and optimal, we can use the usual idea of fuzzy logic
– namely, apply an appropriate “and”-operation (t-norm) f&(a, b) to these de-
grees, resulting in

d(a) = f&(µ(a), µopt(a)). (5)

In principle, we can use any “and”-operation: e.g., the operations min(a, b)
and a · b proposed in the very first Zadeh’s paper on fuzzy logic, or any more
complex operation.

Once we have selected an “and”-operation and computed, for each alter-
native a, the degree d(a) to which a is desired, a natural idea is to select the
alternative for which this degree is the largest possible:

d(aopt) = max
a

d(a). (5)

Comment. In formulating the formula (5), we do not need to explicitly restrict
ourselves to alternatives a for which µ(a) > 0: indeed, if µ(a) = 0, then, by the
properties of an “and”-operation, we have d(a) equal to 0 – i.e., to the smallest
possible value.

Limitations of the Bellman-Zadeh approach. Degrees µ(a) describing the
person’s degree characterize subjective feelings and are, thus, approximate; these
values have some accuracy ε. This means that the same subjective feeling can
be described by two different values µ and µ′, as long as these values differ by
no more than ε: |µ−µ′| ≤ ε. In particular, the same small degree of possibility
can be characterized by 0 and by a small positive number ε.

It seems reasonable to expect that small – practically indistinguishable –
changes in the value of the degrees would lead to small, practically indistin-
guishable, changes in the solution to the corresponding optimization problem.
But, unfortunately, with the Zadeh-Bellman approach, this is not the case.

To show this, let us consider a very simple example when:

• each alternative is characterized by a single number,

• the objective function is simply f(a) = a,

• the membership function µ(a) – e.g., corresponding to “small positive”
– is a triangular membership function µ(a) which is equal to 1 − a for
a ∈ [0, 1] and to 0 for all other values a, and

• the “and”-operation is f&(a, b) = a · b.
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In this case, the set {a : µ(u) > 0} is equal to [0, 1), so m = 0, M = 1, and

µopt(a) =
a− 0

1− 0
=
a

2
.

So,

d(a) = f&(µ(a), µopt(a)) = (1− a) · a
2

=
a− a2

2
.

Differentiating this expression with respect to a and equating derivative to 0,
we conclude that the maximum of this function is attained when 1 − 2a = 0,
i.e., for aopt = 0.5.

On the other hand, if we replace 0 values of the degree µ(a) for a ∈ [−1, 0]
with a small value µ(a) = ε > 0, then we get {a : µ(a) > 0} = [−1, 1), so
m = −1, thus

µopt(a) =
a− (−1)

1− (−1)
=
a+ 1

2
.

For a ≤ 0, the product d(a) is increasing, so its maximum has to be attained
for a ≥ 0. For values a ≥ 0, we have

d(a) = f&(µ(a), µopt(a)) = (1− a) · a+ 1

2
=

1− a2

2
.

This is a decreasing function, so its maximum is attained when aopt = 0.
So, indeed, an arbitrarily small change in µ(a) can lead to a drastic change

in the selected “optimal” alternative.

What is known about this problem. What we showed is that a change in m
can lead to a drastic change in the selected alternative. Interestingly, a change
in M is not that critical: for the product “and”-operation f&(a, b) = a · b, we
select an alternative that maximizes the expression

d(a) = µ(a) · f(a)−m
M −m

.

If we multiply all the values of the maximized constant by the same positive
constant M −m, its maximum remains attained for the same value a. Thus, it
is sufficient to find the alternative that maximized the product (M−m) ·d(a) =
µ(a) · (f(a) − m). Good news is that this expression does not depend on M
at all.

It turns out (see, e.g., [8]) that f&(a, b) is the only “and”-operation for which
there is no such dependence. Thus, in the following text, we will use this “and”-
operation. On the other hand, in [8], it was also shown that no matter what
“and”-operation we select, the result will always depend on m – and thus, will
always have the same problem as we described above.

Remaining problem. So, to make sure that the selection does not change
much if we make a small change to the membership function µ(a), we cannot
just change the “and”-operation, we need to change the formulas (3) and (4).

What we do in this paper. In this paper, we propose an alternative to the
formulas (3) and (4), under which small changes in the degree µ(a) lead to small
changes in the resulting selection.
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2 Main Idea and the Resulting Definition

Main idea. We want to use the fact – mentioned several times by Zadeh
himself – that the same uncertainty can be described both in terms of the
probability density function ρ(x) and in terms of the membership function µ(x).
In both cases, we start with the observed number of cases N(x) corresponding
to different values x, but then the procedure differs:

• to get a probability density function, we need to appropriately normalize
the values N(x), i.e., take ρ(x) = c ·N(x), where the constant c must be
determined from the condition that the overall probability is 1:∫

ρ(x) dx = 1; (6)

• to get a membership function, we also need to appropriately normalize
the values N(x), i.e., take µ(x) = c ·N(x), where the constant c must be
determined from the condition that the largest value of the membership
function is 1: max

x
µ(x) = 1.

Because of this possibility, if we start with a membership function, we can
normalize it into a probability density function ρ(x) = c · µ(x) by multiplying
all the degrees µ(x) by an appropriate constant c. One can easily find this
constant by substituting ρ(x) = c · µ(x) into the formula (6). As a result, we
get

ρ(x) =
µ(x)∫
µ(y) dy

.

How to use this idea: analysis. Based on the known membership function
µ(a), we can use the usual Zadeh extension principle (see, e.g., [3, 6, 10, 11, 12])
to find the membership function ν(x) corresponding to the value x = f(a):

ν(x) = sup
a:f(a)=x

µ(a). (7)

Based on this membership function, we can find the corresponding probability
density function ρ(x) on the set of all the value of the objective function:

ρX(x) =
ν(x)∫
ν(y) dy

. (8)

In these terms, a reasonable way to gauge how optimal is an alternative a with
the value X = f(a) is by the probability F (X) that a randomly selected value
x will be smaller than or equal to X. If this probability is equal to 1, this
means that almost all values f(a′) are smaller than or equal to f(a) – i.e., that
we are practically certain that this alternative a is optimal. The smaller this
probability, the less sure we are that this alternative is optimal.
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In probability and statistics, the probability F (X) is known as the cumula-
tive distribution function (see, e.g., [13]); it is determined by the formula

F (X) =

∫ X

−∞
ρX(x) dx. (9)

Substituting the expression (8) into this formula, we can express F (X) in terms
of the membership function ν(x):

F (X) =

∫X
−∞ ν(x) dx∫
ν(x) dx

. (10)

The probability ρ(a) that a is possible is also proportional to µ(a): ρ(a) =
c · µ(a) for an appropriate coefficient c. The probability that an alternative a
is possible and optimal can be estimated as the product ρ(a) · F (f(a)) of the
corresponding probabilities. It is therefore reasonable to select an alternative
for which this probability is the largest possible. Since c is a positive constant,
maximizing the product ρ(a) · F (f(a)) = c · µ(a) · F (f(a)) is equivalent to
maximizing a simpler expression µ(a) ·F (f(a)). Thus, we arrive at the following
idea.

Resulting idea. To select an alternative under fuzzy constraints, we suggest
to find the alternative that maximizes the product µ(a) · F (f(a)), where the
function F (X) is determined by the formula

F (X) =

∫X
−∞ ν(x) dx∫
ν(x) dx

, (10)

and the corresponding function ν(x) is determined by the formula

ν(x) = sup
a:f(a)=x

µ(a). (7)

Discussion. One can see that if we make minor changes to the degrees µ(a),
we will get only minor changes to the resulting selection.

Simplest 1-D case. In the 1-D case, when f(a) = a, we have ν(x) = µ(x)
and thus, maximizing the product µ(a) ·F (f(a)) – or, equivalently, the product
ρ(a) · F (f(a)) is equivalent to maximizing the product ρ(a) · F (a).

Interestingly, the standard formula for the probability density function of the
skewed generalization of normal distribution – skew-normal distribution – has
exactly this form ρ(a) · F (a), where ρ(a) is the probability density function of
the normal distribution and F (a) is the corresponding cumulative distribution
function; see, e.g., [1, 9].

It is also worth mentioning that, vice versa, fuzzy ideas can be used to
explain the formulas for the skew-normal distribution; see, e.g., [5].
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Example. In the above example,

F (X) =

∫ X

0

(1− x) dx = X − X2

2
,

so we need to find the value aopt for which the product (1−a)·
(
a− a2

2

)
attains

the largest possible value. Differentiating this expression with respect to a and
equating the derivative to 0, we get

−
(
a− a2

2

)
+ (1− a) · (1− a) = 0,

so

−a+
a2

2
+ 1− 2a+ a2 = 0,

and
3

2
· a2 − 3a+ 1 = 0.

Thus,

aopt =
3±
√

9− 6

3
,

i.e., taking into account that a ≤ 1, we take

aopt =
3−
√

3

3
= 1−

√
3

3
≈ 0.42.

One can see that for small ε > 0 we get very close values.

Comment. The original Bellman-Zadeh formula can be described in the same
way, but with the cumulative distribution function F (X) corresponding to the
uniform distribution on the interval [m,M ]; see, e.g., [7]. From this viewpoint,
our proposal can be viewed as a natural generalization of the original formula,
a generalization that takes into account that not all the values from the interval
[m,M ] are equally possible.
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