
University of Texas at El Paso University of Texas at El Paso

ScholarWorks@UTEP ScholarWorks@UTEP

Departmental Technical Reports (CS) Computer Science

5-2020

Towards Fast and Understandable Computations: Which "And"- Towards Fast and Understandable Computations: Which "And"-

and "Or"-Operations Can Be Represented by the Fastest (i.e., and "Or"-Operations Can Be Represented by the Fastest (i.e.,

1-Layer) Neural Networks? Which Activations Functions Allow 1-Layer) Neural Networks? Which Activations Functions Allow

Such Representations? Such Representations?

Kevin Alvarez
The University of Texas at El Paso, kalvarez9@miners.utep.edu

Julio Urenda
The University of Texas at El Paso, jcurenda@utep.edu

Orsoly Csiszár
Óbuda University, orsolya.csiszar@nik.uni-obuda.hu

Gábor Csiszár
University of Stuttgart, gabor.csiszar@mp.imw.uni-stuttgart.de

József Dombi
University of Szeged, dombi@inf.u-szeged.hu

See next page for additional authors

Follow this and additional works at: https://scholarworks.utep.edu/cs_techrep

 Part of the Computer Sciences Commons

Comments:

Technical Report: UTEP-CS-20-42

Recommended Citation Recommended Citation
Alvarez, Kevin; Urenda, Julio; Csiszár, Orsoly; Csiszár, Gábor; Dombi, József; Eigner, György; and
Kreinovich, Vladik, "Towards Fast and Understandable Computations: Which "And"- and "Or"-Operations
Can Be Represented by the Fastest (i.e., 1-Layer) Neural Networks? Which Activations Functions Allow
Such Representations?" (2020). Departmental Technical Reports (CS). 1443.
https://scholarworks.utep.edu/cs_techrep/1443

This Article is brought to you for free and open access by the Computer Science at ScholarWorks@UTEP. It has
been accepted for inclusion in Departmental Technical Reports (CS) by an authorized administrator of
ScholarWorks@UTEP. For more information, please contact lweber@utep.edu.

https://scholarworks.utep.edu/
https://scholarworks.utep.edu/cs_techrep
https://scholarworks.utep.edu/computer
https://scholarworks.utep.edu/cs_techrep?utm_source=scholarworks.utep.edu%2Fcs_techrep%2F1443&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/142?utm_source=scholarworks.utep.edu%2Fcs_techrep%2F1443&utm_medium=PDF&utm_campaign=PDFCoverPages
https://scholarworks.utep.edu/cs_techrep/1443?utm_source=scholarworks.utep.edu%2Fcs_techrep%2F1443&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:lweber@utep.edu

Authors Authors
Kevin Alvarez, Julio Urenda, Orsoly Csiszár, Gábor Csiszár, József Dombi, György Eigner, and Vladik
Kreinovich

This article is available at ScholarWorks@UTEP: https://scholarworks.utep.edu/cs_techrep/1443

https://scholarworks.utep.edu/cs_techrep/1443

Towards Fast and Understandable Computations:

Which “And”- and “Or”-Operations Can Be

Represented by the Fastest (i.e., 1-Layer) Neural

Networks? Which Activations Functions Allow

Such Representations?

Kevin Alvarez1, Julio C. Urenda1,2, Orsolya Csiszár3,4,
Gábor Csiszár5, József Dombi6, György Eigner4, and

Vladik Kreinovich1

1Department of Computer Science
2Department of Mathematical Sciences

University of Texas at El Paso
El Paso, TX 79928, USA

kalvarez9@miners.utep.edu, jcurenda@utep.edu, vladik@utep.edu
3Faculty of Basic Sciences, University of Applied Sciences Esslingen

Esslingen, Germany
4Institute of Applied Mathematics, Óbuda University
Budapest, Hungary, orsolya.csiszar@nik.uni-obuda.hu

eigner.gyorgy@nik.uni-obuda.hu
5Institute of Materials Physics, University of Stuttgart

Stuttgart, Germany
gabor.csiszar@mp.imw.uni-stuttgart.de

6Institute of Informatics, University of Szeged
Szeged, Hungary, dombi@inf.u-szeged.hu

Abstract

We want computations to be fast, and we want them to be understand-
able. As we show, the need for computations to be fast naturally leads to
neural networks, with 1-layer networks being the fastest, and the need to
be understandable naturally leads to fuzzy logic and to the corresponding
“and”- and “or”-operations. Since we want our computations to be both
fast and understandable, a natural question is: which “and”- and “or”-
operations of fuzzy logic can be represented by the fastest (i.e., 1-layer)
neural network? And a related question is: which activation functions
allow such a representation? In this paper, we provide an answer to both

1

questions: the only “and”- and “or”-operations that can be thus repre-
sented are max(0, a + b − 1) and min(a + b, 1), and the only activations
functions allowing such a representation are equivalent to the rectified
linear function – the one used in deep learning. This result provides an
additional explanation of why rectified linear neurons are so successful.
With also show that with full 2-layer networks, we can compute practi-
cally any “and”- and “or”-operation.

1 Formulation of the Problem

Computations are needed. In many application areas, we need to process
data. Because of this need, computers are ubiquitous. What do we want from
the computation results? First of all, we want them to be correct:

• if we are predicting weather, we want these predictions to be mostly suc-
cessful,

• if we are deciding whether to give a loan to a bank’s customer, we want to
be sure that customers who get the loans have a high chance of repaying
them, and that most customers to whom the program decided not to give
the loan will not become very successful – and thus will not present our
missed opportunities.

Coming up with such an algorithm is not easy, this is the main challenge. But
once we have this algorithm, there are two other important challenges.

Two important challenges: computation speed and understandability.
First, in most practical problems, we need to process a large amount of data –
and we need to make a decision reasonably fast:

• if we predict weather, we need to take into account all the results of today’s
measurements of temperature, wind speed and direction, etc., in a given
geographic areas, satellite images, historical data – and get the prediction
of tomorrow’s weather the same day: otherwise, our prediction will be
useless;

• if we decide whether to give a person a loan, we need to take into account
this person’s financial history, financial history of similar customers, gen-
eral economic situation in the region, etc. – and get the result fast, oth-
erwise the customer may lose the business opportunity for which he/she
is seeking this loan.

So, we need all the computations to be as fast as possible.
We also ideally want the computations to be understandable.

• When a weatherperson on the TV predict’s tomorrow’s weather, it is much
more convincing if this person explains why we should expect strong winds,
or, vice versa, perfect weather. These explanations may not be quantita-
tive, usually, qualitative explanations are good enough.

2

• When we explain, to the person, why he/she is not getting a loan while
his/her friends are, we need to have some reasonable explanations – at least
to avoid lawsuits claiming gender-based, age-based, or race-based bias.

How can we achieve these two goals?

Need for fast computations leads to neural networks. A natural way to
speed up computations is to perform them in parallel. In the past, only high-
performance super-computers had several processors working in parallel, but
nowadays, parallelism is ubiquitous: even the cheapest computers have up to
four processors working in parallel. In parallel computations, all that matters
is how fast computations can be performed on one of the processors – since
computations on other processors are performed at the same time.

Which computations are fast? In general, computers process numbers, so, in
general, any computation takes numerical inputs x1, . . . , xn – e.g., measurement
results – and converts them into one or more numerical values y. In mathemat-
ics, a situation when to each input x = (x1, . . . , xn) there corresponds the result
is known as a function, so we can say that each processor computes some func-
tion y = f(x1, . . . , xn).

Which functions are the easier to compute? Functions can be linear or non-
linear. In general, linear functions, i.e., functions of the type

f(x1, . . . , xn) = w0 + w1 · x1 + . . . + wn · xn

are the easiest to compute, so let us keep them in our list of easiest-to-compute
functions. However, we cannot just limit ourselves to linear functions, because
otherwise, if we only apply linear transformations, you will only get linear func-
tions, but in real life, many dependencies are nonlinear. So, we need some
nonlinear functions as well.

Which nonlinear functions are the easiest to compute? In general, the more
inputs the function has, the longer it takes to process all these inputs. Thus,
the easiest to compute are functions of one variable y = s(z).

So, we arrive at the following computation scheme:

• first, each processor applies the fastest – linear – transformation to the
data, i.e., computes the value z = w0 + w1 · x1 + . . . + wn · xn;

• if this is not enough, we apply the fastest non-linear transformation and
compute y = s(z); as a result, we get the value

y = s(w0 + w1 · x1 + . . . + wn · xn); (1)

• then, if needed, we apply another linear transformation, then another
nonlinear one, etc.

As a result, we get a layered computation scheme in which on each layer, each
pair of processors computes the values (1), and then the results from these pairs
become inputs to another layer, etc.

3

This scheme is what is usually known as a neural network; see, e.g., [2, 3, 5].
A two-part component computing the expression (1) is known as a neuron, and
the non-linear function s(z) is known as the activation function. So, the need
for fast computations has indeed led us to neural networks. The fewer layers,
the faster computations: 1-layer networks are the fastest, 2-layer networks are
second fastest.

Neural networks have been very successful in practical applications, espe-
cially the currently popular deep neural networks. Deep neural networks use
more layers, they also use a different activation function: traditionally, neu-
ral networks used sigmoid activation functions s(z) = 1/(1 + exp(−z)), but
lately, with the switch to deep neural networks, different activation functions
are mostly used: rectified linear functions s(z) = max(0, z).

Need for understandability leads to fuzzy techniques. Understandability
means that we should be able to describe the computations by using words
from natural language. One of the main challenges in coming up with such
a description is that natural language is imprecise (fuzzy), so it is difficult to
find the relation between imprecise words from natural language and precise
algorithms. In solving this challenge, it is natural to use the experience of
researchers who came up with such a relationship from the other side of it: by
trying to translate natural-language knowledge into precise terms.

This experience led to the design on fuzzy logic by Lotfi Zadeh; see, e.g.,
[1, 4, 6, 8, 9, 10]. Lotfi Zadeh, a specialist in control and an author of a successful
textbook on control, noticed, in the early 1960s, a puzzling phenomenon: that
human-led control often leads to much better results than even the optimal
automatic control. The answer to this puzzle was clear: humans use additional
knowledge which was not taken into account when the automatic controllers
were designed. The reason why this additional knowledge was not taken into
account is that this knowledge is not described in precise terms, it is described
by using imprecise words from natural language. For example, an operator
may say: if the pressure drops a little bit, increase a little bit the flow of
the chemical into the chamber; here, “a little bit” does not have a precise
meaning. Zadeh invented a methodology for translating this “fuzzy” knowledge
into precise terms, a methodology that he called fuzzy logic, or, more generally,
fuzzy techniques.

His main point is that in contrast to exact statements like “pressure is below
1.2 atmospheres” – which is always either true or false – about the statements
that include natural-language words – like “the drop from 1.3 to 1.2 means that
the pressure dropped a little bit” – experts are not sure. The smaller the drop,
the larger the expert’s degree of confidence that this statement is true. For each
value of the corresponding quantity (e.g., pressure), we can gauge the expert’s
degree of confidence in the corresponding statement by asking the expert to
mark it on a scale, e.g., from 0 to 10. The resulting mark depends on what
scale we use: from 0 to 5 or from 0 to 10 or form 0 to any other number. To
make these estimates uniform, a reasonable idea is to divide the mark by the
largest number on the scale, so that, e.g., 7 on a scale from 0 to 10 becomes

4

7/10 = 0.7. In this new scale, 1 means that the expert is absolutely confident
that this statement is true, 0 means that the expert is absolutely confident that
the statement is false, and values between 0 and 1 correspond to intermediate
degrees of confidence.

The reason why this methodology is called fuzzy logic is that in addition
to simple statements – like the ones above – expert knowledge often contains
statements that include logical connectives like “and” and “or”. For example, an
expert can recommend a certain action if the pressure dropped a little bit and
the temperature increased somewhat. How can we gauge our degree of certainty
in such composite statements? It would be great if we could similarly ask the
expert to estimate his/her degree of confidence for all possible pairs of values
(pressure, temperature). If we have a composite statement combining three
or four different statements, we would need to consider all possible triples or
quadruples. Even if we consider a reasonable number 20-30 of possible values of
each quantity, it makes sense to ask the expert about all 30 values, but asking
about all 304 = 810000 possible quadruples is not realistic. Since we cannot
directly elicit the degree of confidence in all such composite statements directly
from the expert, we need to be able to estimate this degree based on whatever
information we can elicit – i.e., based on the expert’s degrees of confidence in
the component statements.

In precise terms, we need a procedure that would take, as input, the degrees
of confidence a and b in two statements A and B and return an estimate for
the expert’s degree of confidence in a composite statement A&B. We will
denote this estimate by f&(a, b). The corresponding function f& is known as an
“and”-operation, or, for historical reason, a t-norm.

Since the statements “A and B” and “B and A” mean the same thing, it is
reasonable to require that for these two statements, we have the same degree
of confidence, i.e., that f&(a, b) = f&(b, a). In other words, an “and”-operation
must be commutative.

When A is false, clearly A&B is false too, so we must have f&(0, b) = 0
for all b. When A is true, our degree of confidence in A&B is the same as our
degree of confidence in B, i.e., we must have f&(1, b) = b.

Similarly, we need a procedure that would take, as input, the degrees of
confidence a and b in two statements A and B and return an estimate for the
expert’s degree of confidence in a composite statement A ∨ B. We will denote
this estimate by f∨(a, b). The corresponding function f∨ is known as an “or”-
operation, or, for historical reason, a t-conorm.

Since the statements “A or B” and “B or A” mean the same thing, it is
reasonable to require that for these two statements, we have the same degree
of confidence, i.e., that f∨(a, b) = f∨(b, a). In other words, an “or”-operation
must be commutative.

When A is true, clearly A ∨ B is true too, so we must have f∨(1, b) = 1 for
all b. When A is false, our degree of confidence in A ∨ B is the same as our
degree of confidence in B, i.e., we must have f∨(0, b) = b.

Natural questions. As we have mentioned earlier, we want our computations

5

to be both fast and understandable. Understandable means that we have to use
some “and”- and “or’-operations. We thus want these operations to be fast. The
fastest possible computations are computations on a 1-layer neural network, in
which thus “and”-operation is computed by a single neuron, and in which the
“or”-operation can also be computed by a single neuron. So, natural questions
are:

• which “and”- and “or”-operations can be computed by a 1-layer neural
network, and

• what activation functions allow computing “and”- and “or”-operations by
such neural networks.

What we do in this paper. In this paper, we provide answers to both
questions, namely:

• we show that the only “and”- and “or”-operations which can be computed
by a 1-layer neural network are max(0, a + b− 1) and min(a + b, 1), and

• we show that the only activation function allowing such fast computations
are equivalent to rectified linear neurons – which probably provides some
explanations for the current success of such activation functions.

We also show that if we allow linear pre-processing after a single neuron, then we
also represent min(a, b) and max(a, b). If we allow several neurons in a 2-layer
network, then, in effect, we can compute any “and”- and “or”-operations.

2 Definitions and the Main Results

Definition 1. By an “and”-operation, we mean a function

f& : [0, 1]× [0, 1]→ [0, 1]

for which the following properties are satisfied:

• f&(a, b) = f&(b, a) for all a and b,

• f&(0, b) = 0 and f&(1, b) = b for all b.

Definition 2. By an “or”-operation, we mean a function

f∨ : [0, 1]× [0, 1]→ [0, 1]

for which the following properties are satisfied:

• f∨(a, b) = f∨(b, a) for all a and b,

• f∨(0, b) = b and f∨(1, b) = 1 for all b.

6

Comment. Usually, for both “and”- and “or”-operations, other properties are
required as well – namely, continuity, monotonicity, and associativity – but for
our main results, we do not need these additional properties.

Definition 3. We say that a function f(x1, . . . , xn) can be represented by a
1-layer neural network if this function can be represented in the form

f(x1, . . . , xn) = s(w0 + w1 · x1 + . . . + wn · xn)

for some function s(z) and for some values wi. The corresponding function s(z)
is called an activation function.

Definition 4. By a rectified linear function, we mean a function

s0(z) = max(0, z).

Definition 5. We say that two activation functions s1(z) and s2(z) are equiv-
alent if for some constants aij and bij, we have

s1(z) = a10 + a12 · s2(b10 + b11 · z) + a1z · z

and
s2(z) = a20 + a21 · s1(b20 + b21 · z) + a2z · z

for all z.

Comment. This way, the corresponding multi-layer neural networks represent,
in effect, the same class of functions, since each non-linear layer is equivalent
to adding extra linear transformations before and after the non-linear layer
representing another activation function.

Proposition 1. The only “and”-operation that can be represented by a 1-layer
neural network is max(0, a + b − 1), and all activation functions allowing such
a representation are equivalent to the rectified linear function.

Proposition 2. The only “or”-operation that can be represented by a 1-layer
neural network is min(a + b, 1), and all activation functions allowing such a
representation are equivalent to the rectified linear function.

Comment. These results provide another explanation for why rectified linear
activation functions are so successful in deep neural networks.

Proof of Proposition 1. Let us consider an “and”-operation f&(a, b) which
can be represented by a 1-layer neural network. By definition of such a repre-
sentation, this means that f&(a, b) = s(w0 + wa · a + wb · b) for some function
s(z) and for some coefficients wi.

By definition of an “and”-operation, we have f&(a, b) = f&(b, a) for all a
and b. Thus, the expression s(w0 +wa · a+wb · b) should not change if we swap

7

a and b: s(w0 + wa · a + wb · b) = s(w0 + wa · b + wb · a). Therefore, we must
have wa = wb, i.e., f&(a, b) = s(w0 + wa · a + wa · b), and thus,

f&(a, b) = s(w0 + wa · (a + b)). (1)

Let us introduce an auxiliary function t(z)
def
= s(w0 + wa · z). This function

is, by the definition of equivalence, equivalent to s(z). In terms of this auxiliary
function, the formula (1) takes the following simplified form:

f&(a, b) = t(a + b). (2)

For a = 0, by definition of an “and”-operation, we have f&(0, b) = 0 for all
b ∈ [0, 1], thus t(z) = 0 for all z ∈ [0, 1].

For a = 1, by definition of an “and”-operation, we have f&(1, b) = b for all
b ∈ [0, 1], thus t(1 + b) = b for all b ∈ [0, 1]. For z = 1 + b, we have z ∈ [1, 2] and
b = z − 1, thus t(z) = z − 1 for all z ∈ [1, 2]. So, we have:

• t(z) = 0 for z ∈ [0, 1], and

• t(z) = z − 1 for z ∈ [1, 2].

These two cases can be combined into a single formula

t(z) = max(0, z − 1). (3)

Substituting this expression for t(z) into the formula (2), we conclude that
f&(a, b) = max(0, a + b − 1). So, this “and”-operation is indeed the only one
that can be represented by a 1-layer neural network.

Which activation functions can be used for this representation? From the
formula (3), we can see that t(z) is indeed equivalent to the rectified linear
activation function. Since the original function s(z) is equivalent to t(z), we can
conclude that s(z) is also equivalent to the rectified linear activation function.
Thus, the 1-layer representation of an “and”-operation is only possible if we use
rectified linear neurons.

The proposition is proven.

Proof of Proposition 2. Let us now consider an “or”-operation f∨(a, b)
which can be represented by a 1-layer neural network. By definition of such a
representation, this means that f∨(a, b) = s(w0+wa ·a+wb ·b) for some function
s(z) and for some coefficients wi.

By definition of an “or”-operation, we have f∨(a, b) = f∨(b, a) for all a and
b. Thus, the expression s(w0 + wa · a + wb · b) should not change if we swap a
and b: s(w0 +wa · a+wb · b) = s(w0 +wa · b+wb · a). Therefore, we must have
wa = wb, i.e., f∨(a, b) = s(w0 + wa · a + wa · b), and thus,

f∨(a, b) = s(w0 + wa · (a + b)). (4)

Similar to the proof of Proposition 1, let us introduce an auxiliary function

t(z)
def
= s(w0+wa·z). This function is, by the definition of equivalence, equivalent

8

to s(z). In terms of this auxiliary function, the formula (4) takes the following
simplified form:

f∨(a, b) = t(a + b). (5)

For a = 0, by definition of an “or”-operation, we have f∨(0, b) = b for all
b ∈ [0, 1], thus t(z) = z for all z ∈ [0, 1].

For a = 1, by definition of an “or”-operation, we have f&(1, b) = 1 for all
b ∈ [0, 1], thus t(1 + b) = 1 for all b ∈ [0, 1]. For z = 1 + b, we have z ∈ [1, 2] and
b = z − 1, thus t(z) = 1 for all z ∈ [1, 2]. So, we have:

• t(z) = z for z ∈ [0, 1], and

• t(z) = 1 for z ∈ [1, 2].

These two cases can be combined into a single formula

t(z) = min(z, 1). (6)

Substituting this expression for t(z) into the formula (5), we conclude that
f∨(a, b) = min(1, a+ b). So, this “or”-operation is indeed the only one that can
be represented by a 1-layer neural network.

Which activation functions can be used for this representation? One can
easily see that the expression (6) can be represented in an equivalent form
t(z) = 1 − max(1 − z, 0), so t(z) is indeed equivalent to the rectified linear
activation function. Since the original function s(z) is equivalent to t(z), we can
conclude that s(z) is also equivalent to the rectified linear activation function.
Thus, the 1-layer representation of an “or”-operation is only possible if we use
rectified linear neurons.

The proposition is proven.

3 Two-Layer Networks and the Auxiliary Result

What about other “and”- and “or”-operations? In this paper, we have
shown that only the operations f&(a, b) = max(0, a + b − 1) and f∨(a, b) =
min(a + b, 1) can be represented by 1-layer neural networks. How many layers
do we need to represent general “and”- and “or”-operations?

It is known – see, e.g., [7] – that for every continuous “and”- (or “or”-)
operation f(a, b) and for every ε > 0, then exists a function F (z) for which an
“and”- (or, respectively, “or”-) operation

g(a, b) = F−1(F (a) + F (b)) (7)

satisfies the property |f(a, b) − g(a, b)| ≤ ε for all a and b. (Of course, for
this result to be true, it is not sufficient to have the above simplified defini-
tions of “and”- and “or”-operations: we also need to assume associativity and
monotonicity.)

For very small ε, the operations f(a, b) and g(a, b) are practically indis-
tinguishable. So, from practical viewpoint, every “and”-operation and every

9

“or”-operation can be represented in the form (7). Every function of this form
can be computed by a 2-layer neural network:

• in the first layer, we use the inputs a and b to compute the values a′ = F (a)
and b′ = F (b);

• then, in the second layer, we compute the value F−1(a′ + b′), which is
exactly the desired value F−1(F (a) + F (b)).

So, from the practical viewpoint, every “and”-operation and every “or”-
operation can be computed by a 2-layer neural network.

For example, a widely used “and”-operation f&(a, b) = a ·b can be computed
as exp(ln(a) + ln(b)), with F (z) = ln(z) and the inverse function F−1(z) =
exp(z). Similarly, a widely used “or”-operation f∨(a, b) = a + b − a · b can be
computed in the form (7) with F (z) = ln(1− z) and F−1(z) = 1− exp(z).

When is it sufficient to have a single neuron with linear post-
processing? We have shown that, from the practical viewpoint, all “and”-
and “or”-operations can be represented by a 2-layer neural network. Interest-
ingly, some “and”- and “or”-operations f(a, b) can be represented by a single
neuron if we allow an additional linear post-processing. For example, one can
easily see that min(a, b) = b−max(0, b− a) and max(a, b) = a + max(0, b− a).

It turns out that these are the only “and”- and “or”-operations which can
be thus represented.

Definition 6. We say that a continuous monotonic associative “and”-operation
f&(a, b) can be computed by a single neuron with linear post-processing if we
have

f&(a, b) = c0 + ca · a + cb · b + s(w0 + wa · a + wb · b). (8)

Definition 7. We say that a continuous monotonic associative “or”-operation
f∨(a, b) can be computed by a single neuron with linear post-processing if we
have

f∨(a, b) = c0 + ca · a + cb · b + s(w0 + wa · a + wb · b). (9)

Proposition 3. The only “and”-operations that can be computed by a single
neuron with linear post-processing are max(0, a + b − 1) and min(a, b). All
activation functions allowing such a computation are equivalent to the rectified
linear function.

Proposition 4. The only “or”-operations that can be computed by a single
neuron with linear post-processing are min(a + b, 1) and max(a, b). All activa-
tion functions allowing such a computation are equivalent to the rectified linear
function.

Proof of Propositions 3 and 4. First of all, let us somewhat simplify the
expressions (8) and (9) for the corresponding operation f(a, b).

10

We cannot have wa = wb = 0 because then, the function f(a, b) would
be linear, and it is easy to show that no linear function can satisfy all the
requirements of an “and”-operation or of an “or”-operation. Thus, either wa 6= 0
or wb 6= 0 (or both).

If wa = 0, then, due to commutativity of f(a, b), we can swap a and b and
get an expression with wa 6= 0. Thus, without losing generality, we can assume
that wa 6= 0.

We can thus introduce an auxiliary function t(z) = c0 + s(w0 + wa · z). In
terms of this auxiliary function, formulas (8) and (9) take the form

f(a, b) = ca · a + cb · b + t(a + k · b), (10)

where k
def
= wb/wa.

If k = 1, then the expression t(a + k · b) is symmetric with respect to a and
b. Since for both types of operations, the function f(a, b) is commutative, we
thus conclude that the difference

ca · a + cb · b = f(a, b)− t(a + b)

is also commutative. Therefore, ca = cb, hence the whole expression (10) de-
pends only on the sum a+ b, i.e., has the form F (a+ b) for some function F (z).
This means that each such function is computable by a 1-layer neural network,
and all “and”- and “or”-operations which can be thus represented have been
described in Propositions 1 and 2.

To complete the proof, it is therefore necessary to consider the case when
k 6= 1, i.e., when the lines a+ k · b = const are not parallel to the diagonal a = b
of the square [0, 1]× [0, 1]. Each line a + k · b = const intersects the borderline
of the square at two points. On the borderline – i.e., when one of the values a
and b is equal to 0 or to 1 – the value of an “and”- or “or”-operation is uniquely
determined by the corresponding Definition (Definition 1 or Definition 2). Since
the function f(a, b) is linear on this line, its values for all the points from this
line are uniquely determined by the values at these two borderline points. Thus,
for each k, we uniquely determine all the values f(a, b) for all the pairs (a, b).

One can check that the only case when the resulting function is commutative
and associative is the case k = −1, in which case we indeed get min(a, b) and
max(a, b). We can also easily check that in both case, the activation function
t(z) is indeed equivalent to the rectified linear function. The propositions are
proven.

Remaining open problems. It is known (see, e.g., [2]) that functions rep-
resented as linear combinations of the results of 1-neuron layer are universal
approximators – i.e., for each continuous function on a bounded domain and for
each accuracy ε > 0, we can find a neural network which computes the given
function with the desired accuracy. In general, the more accuracy we require,
the more neurons we need. So, to achieve perfect accuracy – i.e., exact com-
putations – we will need potentially infinite number of neurons. However, for
some “and”- and “or”-operations, we can have perfect accuracy with a limited

11

number of neurons: e.g., the operation a · b can be computed by a 2-neuron
network, as

a · b =
1

4
· (a + b)2 − 1

4
· (a− b)2.

The operation a + b− a · b can be computed by a 3-neuron network:

a + b− a · b = (a + b)− 1

4
· (a + b)2 − 1

4
· (a− b)2.

It would be interesting to describe all such “and”- and “or”-operations. Maybe
a · b and a + b− a · b are the only such operations?

Acknowledgments

This work was supported in part by the grant TUDFO/47138-1/2019-ITM from
the Ministry of Technology and Innovation, Hungary, and by the US National
Science Foundation grants 1623190 (A Model of Change for Preparing a New
Generation for Professional Practice in Computer Science) and HRD-1242122
(Cyber-ShARE Center of Excellence).

References

[1] R. Belohlavek, J. W. Dauben, and G. J. Klir, Fuzzy Logic and Mathematics:
A Historical Perspective, Oxford University Press, New York, 2017.

[2] C. M. Bishop, Pattern Recognition and Machine Learning, Springer, New
York, 2006.

[3] I. Goodfellow, Y. Bengio, and A. Courville, Deep Leaning, Cambridge,
Massachusetts: MIT Press, 2016.

[4] G. Klir and B. Yuan, Fuzzy Sets and Fuzzy Logic, Prentice Hall, Upper
Saddle River, New Jersey, 1995.

[5] V. Kreinovich and O. Kosheleva, “Deep learning (partly) demystified”, Pro-
ceedings of the 4th International Conference on Intelligent Systems, Meta-
heuristics & Swarm Intelligence ISMSI’2020, Thimpu, Bhutan, April 18–
19, 2020.

[6] J. M. Mendel, Uncertain Rule-Based Fuzzy Systems: Introduction and New
Directions, Springer, Cham, Switzerland, 2017.

[7] H. T. Nguyen, V. Kreinovich, and P. Wojciechowski, “Strict Archimedean
t-norms and t-conorms as universal approximators”, International Journal
of Approximate Reasoning, 1998, Vol. 18, Nos. 3–4, pp. 239–249.

[8] H. T. Nguyen, C. L. Walker, and E. A. Walker, A First Course in Fuzzy
Logic, Chapman and Hall/CRC, Boca Raton, Florida, 2019.

12

[9] V. Novák, I. Perfilieva, and J. Močkoř, Mathematical Principles of Fuzzy
Logic, Kluwer, Boston, Dordrecht, 1999.

[10] L. A. Zadeh, “Fuzzy sets”, Information and Control, 1965, Vol. 8, pp. 338–
353.

13

	Towards Fast and Understandable Computations: Which "And"- and "Or"-Operations Can Be Represented by the Fastest (i.e., 1-Layer) Neural Networks? Which Activations Functions Allow Such Representations?
	Recommended Citation
	Authors

	tmp.1592326331.pdf.WgEPm

