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Abstract

For each task, the larger the stimulus, the larger proportion of people
agree to perform this task. In many economic situations, it is important
to know how much stimulus we need to offer so that a sufficient proportion
of the people will agree to perform the needed task. There is an empir-
ical formula describing how this proportion increases as we increase the
amount of stimulus. However, this empirical formula lacks a convincing
theoretical explanation, as a result of which practitioners are somewhat
reluctant to use it. In this paper, we provide a theoretical explanation for
this empirical formula, thus making it more reliable – and hence, more
useable.

1 Formulation of the Problem

The larger the stimulus, the more people agree to do the task. In
economics, we need to entice people to perform certain tasks – whether it is
planting crops or working on a factory or writing a software package. When
the corresponding stimulus is too small, no one will agree to perform the task.
When the stimulus is very high, everyone will agree. The proportion p of people
who agree to perform a task will increase with the increase in the stimulus s.

It is desirable to know the exact amount of stimulus. A company wants
certain tasks to be performed, so it has to use some stimulus. It is therefore
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desirable to find the exact amount of stimulus needed:

• if the stimulus is too low, no one will volunteer,

• if it is very high, the tasks will be performed, but the company will lose
too much money.

How the amount of stimulus is usually determined now. In many cases,
the selection of the right stimulus is done mostly by trial and error. This is, e.g.,
how airline companies, in an overbooked situation, ask for volunteers to give up
their seats and fly the next day: they increase the award offered to potential
volunteers until they get enough volunteers.

Formulas are needed, and there are such formulas. Trial-and-error is
a lengthy process, difficult to predict. It is therefore desirable to have some
analytical expressions that would help us select the right amount of stimulus.

Such expressions exist; see, e.g., [2] and references therein. The most empir-
ically adequate expression is

p =
sq

sq + c
, (1)

for some constants q and c.

This formula is purely empirical. One of the main limitation of this for-
mula is that is it purely empirical, it does not have a convincing theoretical
explanation. Practitioners are usually very suspicious of best-fit purely empir-
ical formulas, they are reluctant so use these formulas, they prefer formulas
for which some theoretical explanation exists – since purely empirical formulas
often turn out to be wrong.

And in economics and related areas, such later-wrong empirical formulas are
ubiquitous:

• when a country has a boom, empirical formulas predict exponential growth
forever;

• when, in the 1920s, the number of telephone operators started growing
exponentially, empirical formulas predicted that in a few decades, half of
the population will be telephone operators;

there are many examples like that.
It is thus desirable to come up with a theoretical explanation for empirical

formulas.

What we do in this paper. In this paper, we provide a theoretical explanation
for the formula (1).

2 Main Idea and the Resulting Explanation

Let us reformulate the problem in terms of probabilities. In the above
text, we talked about proportion of people who take on the task. From the
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mathematical viewpoint, a proportion is not something about which we know
much.

But what is proportion? It is simply the probability that a randomly selected
person will take on the task. So, whatever we said about proportions can be
reformulated in terms of probabilities – and about probabilities, we know a lot!

Comment. Good news is that we do not even need to change the notation p,
since both words “proportion” and “probability” start with the same letter p.

What do we know about probabilities? One of the most widely used facts
about probabilities is that if we add new evidence E, the probability of each
hypothesis Hi changes according to the Bayes formula (see, e.g., [3]), from the
original value p0(Hi) to the new value

p(Hi |E) =
p0(Hi) · p(E |Hi)∑

j

p0(Hj) · p(E |Hj)
. (2)

In our case, we have two hypotheses:

• the hypothesis H0 that the person will take on the task whose probability
is p(H0), and

• the hypothesis H1 that the person will not take on the task; its probability
is equal to p(H1) = 1− p(H0).

In this case, the general formula (2) takes the form

p(H0 |E) =
p0(H0) · p(E |H0)

p0(H0) · p(E |H0) + (1− p0(H0)) · p(E |H1)
=

p(H0) · p(E |H0)

p(H0) · (p(E |H0)− p(E |H1)) + p(E |H1)
.

In other words, the change of the probability from the previous value p = p0(H0)
to the new value p′ = p(H0 |E) is described by the formula

p′ =
p · p(E |H0)

p · (p(E |H0)− p(E |H1)) + p(E |H1)
. (3)

If we divide both the numerator and the denominator of the formula (3) by
p(E |H1), then we get the following expression:

p′ =

p · p(E |H0)

p(E |H1)

1 + p ·
(
p(E |H0)

p(E |H1)
− 1

) ,
i.e., the expression

p′ =
a · p

1 + (1− a) · p
, (4)
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where we denoted

a
def
=

p(E |H0)

p(E |H1)
.

In other words, from the mathematical viewpoint, the change of the probability
from the previous value p to the new value p′ is thus described by a fractional-
linear formula (4).

Here comes our idea. Our idea is that when we increase the stimulus, the
resulting change of the probability should follow the formula (4).

How can we formalize this idea. What does it mean “increase the stimu-
lus”? Intuitively, it means that we increase all the previous stimuli the same
way.

What does that mean? If we simply add $10 to all the previous stimulus
values, this does not mean that we increases all the stimuli the same way. For
example:

• if the previous stimulus was $5, this is a drastic 3-times increase, but

• if the previous stimulus was $1000, this is a barely noticeable 1% increase.

From the economic viewpoint, it makes more sense to increase all the previous
stimulus values proportionally; e.g.:

• increase all the values by 1%, or

• increase all the values by 10%, or

• increase all the values by a factor of three.

With such an increase, instead of previous stimulus value s, we get a new stim-
ulus value λ · s, where, e.g.:

• an over-the-board 1% increase means λ = 1.01,

• an over-the-board 10% increase means λ = 1.1, and

• an over-the-board 3-times increase means λ = 3.

In these terms, the main idea takes the following form.

Resulting formulation. We want to find an increasing function p(s) for which
p(0) = 0, p(s)→ 1 as s→∞, and for every λ > 0, there exists a(λ) for which,
for all s, we have

p(λ · s) =
a(λ) · p(s)

1 + (a(λ)− 1) · p(s)
. (5)

Our main result. Our main result is that every function p(s) satisfying the
above conditions has exactly the form (1), for some values q and c.

This is exactly what we wanted. Thus, we indeed have the desired justifi-
cation of the empirical formula (1).
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3 Proof of the Main Result

Let us reformulate the formula (5) in terms of odds. For this proof, it
is convenient to reformulate probabilities p in terms of the odds, i.e., in terms
of the ratio

o =
p

1− p
.

Let us first find the odds corresponding to the new probability p(λ ·s). From
the formula (5), we get

1− p(λ · s) = 1− a(λ) · p(s)
1 + (a(λ)− 1) · p(s)

=

1 + a(λ) · p(s)− p(s)− a(λ) · p(s)
1 + (a(λ)− 1) · p(s)

=
1− p(s)

1 + (a(λ)− 1) · p(s)
. (6)

Dividing (5) by (6), we get

d(λ · s) =
p(λ · s)

1− p(λ · s)
=
a(λ) · p(s)
1− p(s)

= a(λ) · p(s)

1− p(s)
.

Since the ratio in the right-hand side is exactly the odds o(s) corresponding to
the probability p(s), we thus conclude that

o(λ · s) = a(λ) · o(s). (7)

Now, we can use the known solution to the functional equation (7).
According to [1], every monotonic solution of the equation (7) has the form

o(s) = C · sq (8)

for some values C and q.
The general proof of this statement is somewhat complicated, but it becomes

very straightforward if we make an additional natural assumption that the func-
tion p(s) is differentiable. In this case, the ratio o(s) is also differentiable. Due
to the equation (7), the function a(λ) is equal to the ratio of two differentiable
functions

a(λ) =
o(λ · s)
o(s)

and is, thus, also differentiable. Thus, we can differentiate both sides of the
equation (7) with respect to λ and get

s · o′(λ · s) = a′(λ) · o(s),

where, as usual, f ′(x) denotes the derivative. In particular, for λ = 1, we get

s · o′(s) = q · o(s), where we denoted q
def
= a′(1). In other words, we have

s · do
ds

= q · o.
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We can separate the variables s and o if we divide both sides of the equation by
s · o and multiply both sides by ds, then we get

do

o
= q · ds

s
.

Integrating both sides, we get ln(o) = q · ln(s) +C0, where C0 is an integration
constant. By applying exp(x) to both sides, we then get o(s) = C · sq, where

we denoted C
def
= exp(C0).

From the equality (8) to the desired formula (1). According to the
formula (8), we have

o(s) =
p(s)

1− p(s)
= C · sq.

By taking the inverse of both sides, we get

1− p(s)
p(s)

= 1− 1

p(s)
= C−1 · s−q,

thus
1

p(s)
= 1− C−1 · s−q

and therefore,

p(s) =
1

1− C−1 · s−q
.

Multiplying both the numerator and the denominator by sq, we get

p(s) =
sq

sq − C−1
.

Probabilities are always smaller than or equal to 1, thus sq ≤ sq − C−1, i.e.,

C−1 < 0. If we denote c
def
= −C−1, we will get the desired formula (1).

The main result is thus proven.
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