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Abstract

As econometric models become more and more accurate and more
and more mathematically complex, they also become less and less in-
tuitively clear and convincing. To make these models more convincing,
it is desirable to supplement the corresponding mathematics with com-
monsense explanations. In this paper, we provide such explanation for
three economics-related concepts: sparsity (as in LASSO), Zipf’s Law,
and Nash’s bargaining solution.

1 Formulation of the Problem

Need for commonsense explanations. In the 19 century, from Adam Smith
through Karl Marx, economic phenomena were described by relatively simple
intuitively clear formulas. However, it was well understood that these formulas
provide, at best, a qualitative understanding, and qualitative predictions.

Economics and finance are complex phenomena, so not surprisingly, simple
models do not provide a good quantitative description of these phenomena.
Starting with the 20 century, new models appeared that allow us, in many
cases, to make reasonable accurate predictions. The corresponding models –
that more adequately describe economic and financial phenomena – are often
very mathematically complicated, far from common sense.

And here lies a problem. Since models are complicated, requiring complex
math beyond what most people know, people in general – and politicians in
particular – do not fully trust these models. This lack of complete trust is
understandable, since sometimes, predictions of previous models turn out to be
wrong, and decisions based on these predictions made crisis situations worse. It
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is therefore desirable to come up with commonsense explanations for the current
models – or at least for the major assumptions behind these models and for the
main features of these models.

This need is similar to the well-publicized need for explainable AI (see, e.g.,
[2, 24, 30]) – for example, a female entrepreneur who was denied a bank loan
by an AI-computer program would like to make sure that this denial was based
on inadequate state of her company and not on the fact that, since in the
past, most loans were given to men, the statistics-based system automatically
continues this trend.

What we do in this paper. Of course, the goal of having explainable econo-
metrics is complex, it requires joint efforts of many researchers. In this paper, we
provide just three examples of the desired commonsense explanations: namely,
we provide commonsense explanation for sparsity, for Zipf law, and for Nash’s
bargaining solution.

2 Commonsense Explanation of Sparsity

What is sparsity: a brief reminder. Econometric analysis often starts with
trying to use linear regression: we try to predict the value y(t+1) of the desirable
quantity y at the next moment of time t+ 1 (e.g., next month or next year) as
a linear combination of the values x1(t), . . . , xn(t) of different quantities at the
current moment of time – and maybe of their past values xi(t − 1), xi(t − 2),
. . .

Usually, just to be on the safe side, we add as many quantities xi and as
many past moments of time as possible, realizing that some of these values
may be irrelevant. In the process of regression, it usually turns out that many
of these variables are indeed irrelevant – we can see it by observing that the
coefficients at these variables are close to 0.

The problem with using the usual linear regression methods for linear regres-
sion is that, since the data is noisy, and linear dependence is approximate, we
do not get perfect match, and thus, do not get exactly 0 values even where there
is no dependence, and these erroneously non-zero value make the resulting pre-
dictions much less accurate. Much more accurate predictions can be obtained
if we explicitly require, from the very beginning, that a large number of the
coefficients be zero, i.e., that the dependence is sparse. This is the main idea
behind, e.g., the LASSO method [1, 16, 31].

Comment. Sparsity is not limited to economics and finance, it is a useful tool
in data processing in general; see, e.g., [4, 5, 6, 7, 8, 10, 11, 12, 13, 14, 15, 20,
22, 26, 32, 33].

Why do we need a commonsense explanation for sparsity. At first
glance, what we described makes sense, but one can also raise a serious counter-
argument: in economics and in finance, everything is inter-related, often, a small
event across the world causes some stocks to go up or down, so why would there
be zero coefficients at all?
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From this viewpoint, if one looks seriously at the previous text, this text
does not provide any commonsense explanation, just states the empirical fact
that the resulting best-fit formulas are often sparse.

It would thus be nice to have some commonsense explanation for this em-
pirical phenomenon of sparsity.

Continuity: main commonsense feature underlying our explanation.
Our commonsense explanation is based on a reasonable feature of continuity –
that small changes in one or several quantities should lead to small changes in
other quantities.

Of course, there are extreme situations when there is no continuity: e.g.,
if the amount of money that a company needs to pay right away is slightly
smaller than its current amount of liquid assets, it can easily pay its creditors and
suppliers, while if the needed amount is slightly larger than what is available, the
company may be in trouble. But even this situation is more purely theoretical:
if the difference is very small, the company can easily take a loan or negotiate
a payment extension with its suppliers – and if they refuse because of the bad
financial history of this company, this means that the trouble is in this bad
history and not in the minor inability to fully pay the debts right away.

Let us describe continuity in precise terms. Suppose that we have a linear
relation between the input quantities x1, . . . , xn and the desired quantity y:

y = a0 + a1 · x1 + . . .+ an · xn. (1)

Continuity means, in particular, that if we make a small change in one or several
values xi, i.e., replace the original value xi with a new value xi + ∆xi, where
|∆xi| ≤ ε for some ε > 0, then the resulting change ∆y in y must also be small,
i.e., smaller than δ > 0 for some δ ≈ ε. (It may be tempting to take δ = ε, but,
as we will see, this is not possible.)

Similarly, if we analyze the dependence of y on one of the variables xi – i.e.,
if we analyze how much we need to change xi to reach the desired change in y
– then we can formulate a similar requirement: that for each small change ∆y
(when |∆y| ≤ ε), the corresponding change ∆xi should also be small: |∆xi| ≤ δ.

Comment. Of course, this requirement only makes sense only when a change in
xi can actually change y, i.e., when the corresponding coefficient ai is different
from 0.

What we can conclude from continuity. If we change one of the variables
xi by ∆xi = ε, then the value of y changes by ∆y = ai ·∆xi = ai · ε. So, the
requirement that |∆y| ≤ δ takes the form |ai · ε| ≤ δ, i.e., that

|ai| ≤
δ

ε
. (2)

Similarly, for the indices i for which ai 6= 0, the change in y caused by a
change ∆xi in xi is equal to ∆y = ai ·∆xi. Thus, to get the change ∆y = ε,
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we need to take ∆xi =
∆y

ai
=

ε

ai
. The requirement that |∆xi| ≤ δ thus takes

the form

∣∣∣∣ εai
∣∣∣∣ ≤ δ, i.e., equivalently,

ε

δ
≤ |ai|. (3)

This, by the way, shows why we cannot take δ = ε – in this case, from
(2) and (3), we would conclude that |ai| ≤ 1 and 1 ≤ |ai|, so |ai| = 1 – but
empirically, we can have different values ai. Moreover, we must have ε < δ –
otherwise, if ε > δ, then (2) and (3) would lead to two inconsistent inequalities
|ai| < 1 and 1 < |ai|.

So far, we considered the case when we change only one input. What if we
change all of them, e.g., if we take ∆xi = sign(ai) · ε for all i? In this case, we
have

∆y =
∑
i=1

ai · sign(ai) · ε =

n∑
i=1

|ai| · ε = ε ·
n∑

i=1

|ai|.

In this formula, we can safely ignore all the indices for which ai = 0, so

∆y = ε ·
∑

i:ai 6=0

|ai|.

Our continuity requirement is that |∆y| ≤ δ. In this example, ∆y > 0, so
|∆y| = ∆y, and the desired inequality takes the form

ε ·
∑

i:ai 6=0

|ai| ≤ δ. (4)

We already know that
ε

δ
≤ |ai|, thus,

ni ·
ε

δ
≤
∑

i:ai 6=0

|ai|, (5)

where by ni, we denotes the number of non-zero coefficients ai. Multiplying
both side of inequality (5) by ε, we conclude that

ni ·
ε2

δ
≤ ε ·

∑
i:ai 6=0

|ai|. (6)

By combining inequalities (4) and (6), we conclude that

ni ·
ε2

δ
≤ δ,

i.e., equivalently, that

ni ≤
δ2

ε2
.

Since δ ≈ ε, this means that the ratio
δ2

ε2
is reasonably small, so the number ni

of non-zero coefficients is small – which is exactly sparsity!
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3 Commonsense Explanation of Zipf’s Law

Zipf’s law: a brief reminder. This law is named after a scientist who
discovered that in linguistics: if we order all the words from a natural language
from the most frequent to the least frequent ones, then the frequency pn of the
n-th word in this order is approximately equal to c/n. This law turned out to
be ubiquitous, it is applicable to many phenomena, including economic ones;
see, e.g., [9, 21]. For example, it describes the distribution of companies by size.

How can we explain this law in commonsense terms?

Main idea behind our explanation. The fact that we sorted objects (words,
companies, etc.) in the reverse order according to their frequency means that:

• if m < n, then pn < pm, and

• vice versa, if pn < pm, then m < n.

These formal statements are not very informative: they are satisfied for Zipf’s
law pn = c/n, but they could be satisfied for all other possible monotonic
sequences, e.g., pn = c/n2 or pn = exp(−c · n).

However, a natural commonsense understanding of these two conditions goes
beyond their formal definition. It is natural, e.g., to also conclude that m is
somewhat smaller than n, then pn is somewhat smaller than pm, and that if m
is much smaller than n, then pn is much smaller than pm.

This commonsense understanding can be described as follows: intuitively, a
statement that A implies B means not only that if A is true then B is true, it
also means that, more generally, the degree d(B) to which we believe in B is at
least as large as the degree d(A) to which we believe in A.

Comment. In principle, we could formalize the notion of a degree – e.g., by
using fuzzy logic [3, 18, 23, 28, 29, 34] – but let us stick to commonsense ideas,
and do now go into formalization unless it becomes necessary.

Resulting explanation. From the viewpoint of the above understanding, the
two implication statements mean the following:

• the first statement means that the degree d(pn < pm) to which we believe
that pn < pm is greater than or equal to the degree of belief d(m < n)
that m < n:

d(m < n) ≤ d(pn < pm);

• similarly, the second statement means that the degree d(m < n) to which
we believe that m < n is greater than or equal to the degree of belief
d(pn < pm) that pn < pm:

d(pn < pm) ≤ d(m < n).

The above two inequalities imply that these degree are equal:

d(pn < pm) = d(m < n). (7)
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How do we describe this degree? In principle, this can be done differently,
but in economic applications, this is usually understood in relative – percent –
terms. If we say that someone started earning 10K more per year, we are not
explaining anything: it may be going to 0 to 10K, or it may be a miserable
increase from 300K to 310K. A much better commonsense understanding is
provided by the ratio of two numbers: no matter what we started with, a 3%
increase is not much, a 20% increase is always significant, and a 100% increase
is always drastic.

Thus, in economic applications, the degree d(a < b) to which a is smaller
than b is determined only by the ratio, i.e., d(a < b) = f(b/a) for some increasing
function f(x). From this viewpoint, the formula (7) takes the form

f

(
pm
pn

)
= f

( n
m

)
.

Since the function f(x) is increasing – the larger the ratio b/a, the more we are
convincing that b is larger – this equality is equivalent to

pm
pn

=
n

m
.

If we move all the terms containing m to one side and all the terms containing
n to the other side, we conclude that m · pm = n · pn for all m and n. This
product is the same for all n, i.e., is a constant: n · pn = c. Thus, pn = c/n,
exactly the Zipf’s law!

4 Commonsense Explanation of Nash’s Bargain-
ing Solution

Nash’s bargaining solution: a brief reminder. In many real-life situations,
the outcome depends on the actions of several actors. A classical example
is several countries producing oil. Depending on their actions, they may get
different gains (g1, . . . , gn). In some possible outcomes, one actor gets more, in
other outcomes, another actor gets more. For example, if one country cuts off
its production and others don’t, other countries will benefit.

If the actors do not coordinate their action – e.g., if we all produce too much
oil, the price of oil will dive, and they will all lose. So, they need to come up
with a joint compromise solution.

A Nobelist John Nash used some – rather complex – math – to show that

the best strategy is to maximize the product
n∏

i=1

gi of the participants’ gains;

see, e.g., [19, 25, 27].

It is desirable to have a commonsense explanation. From the mathe-
matical viewpoint, it is a good solution, but from the commonsense viewpoint,
multiplying gains does not make any sense.

How can we explain this idea in commonsense terms?
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Main idea and the resulting explanation. How can we gauge the quality
of a solution? For athletes, a natural measure of the athlete’s quality is the
number of other athletes whose performance is lower. For standardized tests,
the person’s results are usually described by the percentage of test takers who
had worse performance. This way it is clear that if this percentage is 3%, the
graduate program applicant is not very good, while if it is 99.9%, we should
accept this person right away.

Similarly, we can gauge the quality of an alternative g = (g1, . . . , gn) by
counting how many alternatives are worse, i.e., how many there are tuples g′ =
(g′1, . . . , g

′
n) 6= g which are clearly worse, i.e., for which g′i ≤ gi for all i (since

g′ 6= g, this implies that g′i < gi for some i).
From the purely mathematical viewpoint, there are infinitely many such

tuples. In practice, however, there is some “quantum” here, the smallest amount
ε > 0 below which the difference is not noticeable. It may be 1 cent if we
talk about people, it may be 1 million dollars if we talk about oil producing
companies.

From this viewpoint, there are g1/ε values 0, ε, 2ε, . . . which are smaller than
or equal to g1. For each of these values, there are g2/ε values which are smaller
than or equal to g2 – i.e., (g1/ε) · (g2/ε) possible combinations. Similarly, we
conclude that overall, there are

(g1/ε) · . . . · (gn/ε) =

n∏
i=1

gi

εn

possible alternatives which are worse than the alternative g = (g1, . . . , gn). Max-

imizing this number is equivalent to maximizing the product
n∏

i=1

gi – which is

exactly Nash’s bargaining solution!
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