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Abstract

In situations when we know which inputs are relevant, the least squares
method is often the best way to solve linear regression problems. However,
in many practical situations, we do not know beforehand which inputs are
relevant and which are not. In such situations, a 1-parameter modification
of the least squares method known as LASSO leads to more adequate
results. To use LASSO, we need to determine the value of the LASSO
parameter that best fits the given data. In practice, this parameter is
determined by trying all the values from some discrete set. It has been
empirically shown that this selection works the best if we try values from a
geometric progression. In this paper, we provide a theoretical explanation
for this empirical fact.

1 Formulation of the Problem

Need for regression. In many real-life situations, we know that the quantity
y is uniquely determined by the quantities x1, . . . , xn, but we do not know
the exact formula for this dependence. For example, in physics, we know that
the aerodynamic resistance increases with the body’s velocity, but we often do
not know how exactly. In economics, we may know that a change in tax rate
influences the economic growth, but we often do not know how exactly.

In all such cases, we need to find the dependence y = f(x1, . . . , xn) between
several quantities based on the available data, i.e., based on the previous ob-
servations (xk1, . . . , xkn, yk) in each of which we know both the values xki of
the input quantities xi and the value yk of the output quantity y. In statistics,
determining the dependence from the data is known as regression.
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Need for linear regression. In most cases, the desired dependence is smooth
– and usually, it can even be expanded in Taylor series; see, e.g., [1, 5]. In
many practical situations, the range of the input variables is small, i.e., we have

xi ≈ x
(0)
i for some values x

(0)
i . In such situations, after we expand the desired

dependence in Taylor series, we can safely ignore terms which are quadratic or

of higher order with respect to the differences xi − x(0)i and only keep terms
which are linear in terms of these differences:

y = f(x1, . . . , xn) = c0 +

n∑
i=1

ai ·
(
xi − x(0)i

)
,

where c0
def
= f

(
x
(0)
1 , . . . , x

(0)
n

)
and ai

def
=

∂f

∂xi |xi=x
(0)
i

. This expression can be

simplified into a general linear expression:

y = a0 +

n∑
i=1

ai · xi, (1)

where a0
def
= c0 −

n∑
i=1

ai · x(0)i .

In practice, measurements are never absolutely precise, so when we plug
in the actually measured values xki and yi, we will only get an approximate
equality:

yk ≈ a0 +

m∑
i=1

ai · xki. (2)

Thus, the problem of finding the desired dependence can be reformulated as
follows:

• given the values yk and xki,

• find the coefficients ai for which the property (2) holds for all k.

The usual least squares approach. We want each left-and side yk of the
approximate equality (2) to be close to the corresponding right-hand side. In
other words, we want the tuple (y1, . . . , yK) consisting of all the left-hand sides
to be close to a similar tuple formed by the right-sides(

m∑
i=1

ai · x1i, . . . ,
m∑
i=1

ai · xKi

)
.

It is reasonable to select the values ai for which the distance between these
two tuples is the smallest possible. Minimizing the distance is equivalent to
minimizing the square of this distance, i.e., the expression

K∑
k=1

(
yk −

(
a0 +

m∑
i=1

ai · xki

))2

. (3)
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This minimization is know as the Least Squares method. This is the most widely
used method for processing data. The corresponding values ai can be easily
found if we differentiate the quadratic expression (3) with respect to each of the
unknowns ai and then equate the corresponding linear expressions to 0. Then,
we get an easy-to-solve systems of linear equations.

Comment. The above heuristic idea becomes well-justified when we consider
the case when the measurement errors are normally distributed with 0 mean
and the same standard deviation σ. This indeed happens in many situations
when the measuring instrument’s bias has been carefully eliminated, and most
major sources of measurement errors have been removed. In such situations,
the resulting measurement error is a joint effect of many similarly small error
components. For such joint effects, the Central Limit Theorem states that the
resulting distribution is close to Gaussian (= normal); see, e.g., [4]. Once we
know the probability distributions, a natural idea is to select the most probable
values ai, i.e., the values for which the probability to observe the values yk is
the largest. For normal distributions, this idea leads exactly to the least squares
method.

Need to go beyond least squares. When we know that all the inputs xi are
essential to predict the value y of the desired quantity, the least squares method
works reasonably well. The problem is that in practice, we often do not know
which inputs xi are relevant and which are not. As a result, to be on the safe
side, we include as many inputs as possible, perfectly understanding that many
of them will turn out to be irrelevant.

If all the measurements were exact, this would not be a problem: for ir-
relevant inputs xi, we would get ai = 0, and the resulting formula would be
the desired one. However, because of the measurement errors, we do not get
exactly 0s. Moreover, the more such irrelevant variables we add, the more
non-zero “noise” terms ai · xi we will have, and the larger will be their sum –
negatively affecting the accuracy of the formula (3) and thus, of the resulting
desired (non-zero) coefficients ai.

LASSO method. Since we know that many coefficients will be 0, a natural

idea is, instead of considering all possible tuples a
def
= (a0, a1, . . . , an), to only

consider tuples for which a bounded number of coefficients is 0, i.e., for which
‖a‖0 ≤ B for some constant b, where ‖a‖0 (known as the `0-norm) denotes the
number of non-zero coefficients in a tuple.

The problem with this natural idea is that the resulting optimization problem
becomes NP-hard, which means, crudely speaking, that no feasible algorithm is
possible that would always solve all the instances of this problem. A usual way

to solve such problem is by replacing the `0-norm with an `1-norm
n∑

i=0

|ai| which

is convex and for which, therefore, the optimization problem is easier to solve.
So, instead of solving the problem of unconditionally minimizing the expression

(3), we minimize this expression under the constraint
n∑

i=0

|ai| ≤ B for some
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constant B. This minimum can be attained when we have strict inequality or
when the constraint becomes an equality. If the constraint is a strict inequality,
then we have a local minimum of (3), which, for quadratic functions, is exactly
the global minimum that we try to avoid. Thus, to avoid using least squares, we

must consider the case when the constraint becomes an equality
n∑

i=0

|ai| = B.

According to the Lagrange multiplier method, minimizing a function under
an equality-type constraint is equivalent, for an appropriate value of a param-
eter λ, to unconstraint minimization of the linear combination of the original
objective function and the constraint, i.e., to minimizing the expression

K∑
k=1

(
yk −

(
a0 +

m∑
i=1

ai · xki

))2

+ λ ·
n∑

i=0

|ai|. (4)

This minimization is known as the Least Absolute Shrinkage and Selection Op-
erator method – LASSO method, for short; see, e.g., [3, 6].

How the LASSO parameter λ is selected: main idea. The success of the
LASSO method depends on what value λ we select. When λ is close to 0, we
retain all the problems of the usual least squares method. When λ is too large,
the λ-term dominates, so we select the values ai = 0, which do not provide any
good description of the desired dependence.

In different situations, different values λ will work best. The more irrelevant
inputs we have, the more important it is to deviate form the least squares, and
thus, the larger the parameter λ – that describes this deviation – should be. We
rarely know beforehand which inputs are relevant – this is the whole problem –
so we do now know beforehand what value λ we should use. The best value λ
needs to be decided based on the data.

A usual way of testing any dependence is by randomly dividing the data into
a (larger) training set and a (smaller) testing set. We use the training set to
find the value of the desired parameters (in our case, the parameters ai), and
then we use the testing set to gauge how good is the model. As usual with the
methods using randomization, to get more reliable results, we can repeat this
procedure several times, and make sure that the results are good for all cases,

In precise terms, we select several training subsets S1, . . . , Sm ⊆ {1, . . . ,K}.
For each of these subsets Sj , we find the values aij(λ) that minimize the func-
tional ∑

k∈Sj

(
yk −

(
a0 +

m∑
i=1

ai · xki

))2

+ λ ·
n∑

i=0

|ai|. (5)

We can then compute the overall inaccuracy, as

∆(λ)
def
=

m∑
j=1

∑
k 6∈Sj

(
yk −

(
aj0(λ) +

m∑
i=1

aji(λ) · xki

))2
 . (6)

We then select the value λ for which the corresponding inaccuracy is the smallest
possible.
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How the LASSO parameter λ is selected: details. In the ideal world, we
should be able to try all possible real values λ. However, there are infinitely
many real numbers, and in practice, we can only test finitely many of them.
Which set of values λ should we choose?

It turned out that empirically, the best results are obtained of we use the
values λ that form a geometric progression λn = c0 · qn. Of course, a geometric
progression also has infinitely many values, but we do not need to test all of
them: usually, as λ increases from 0, the value ∆(λ) first decreases then increases
again, so it is enough to catch a moment when this value starts increasing.

Natural question and what we do in this paper. A natural question is:
why geometric progression works best? In this paper, we provide a theoretical
explanation for this empirical fact.

2 Our Result

What do we want? At first glance, the answer to this question is straightfor-
ward: want to select a discrete set of values, i.e., a set

S = {. . . < λn < λn+1 < . . .}.

However, a deeper analysis shows that the answer is not so simple. Indeed,
what we are interested in is the dependence between the quantities y and xi.
However, what we have to deal with is not the quantities themselves, but their
numerical values, and the numerical values depend on what unit we choose for
measuring these quantities. For example:

• a person who is 1.7 m high is also 170 cm high,

• an April 2020 price of 2 US dollars is the same as the price of 2 · 23500 =
47000 Vietnam Dong, etc.

In most cases, the choice of the units is rather arbitrary. It is therefore reason-
able to require that the results of data processing – when converted to original
units – should not depend on which units we originally used. And hereby lies a
problem. Suppose that we keep the same units for xi but change a measuring
unit for y to a one which is α times smaller. In this case, the new numerical
values of y become α times larger: y → y′ = α · y. To properly capture these
new values, we need to increase the original values ai by the same factor, i.e.,
replace the values ai with the new values a′i = α · ai. In terms of these new
values, the minimized expression (4) takes the form

K∑
k=1

(
y′k −

(
a′0 +

m∑
i=1

a′i · xki

))2

+ λ ·
n∑

i=0

|a′i|,

i.e., taking into account that y′k = α · yk and a′i = α · ai, the form

α2 ·
K∑

k=1

(
yk −

(
a0 +

m∑
i=1

ai · xki

))2

+ α · λ ·
n∑

i=0

|ai|.
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Minimizing an expression is the same as minimizing α−2 times this expression,
i.e., the modified expression

K∑
k=1

(
yk −

(
a0 +

m∑
i=1

ai · xki

))2

+ α−1 · λ ·
n∑

i=0

|ai|.

This new expression is similar to the original minimized expression (4), but with
a new value of the LASSO parameter λ′ = α−1 · λ.

What this says is that when we change the measuring units, the values of λ
are also re-scaled – i.e., multiplied by a constant. What was the set {λn} in the
old units becomes the re-scaled set {α−1 ·λn} in the new units. Since this is, in
effect, the same set but corresponding to different measuring units, we cannot
say that one of these sets is better than the other, they clearly have the same
quality.

So, we cannot choose a single set S, we must choose a family of sets {c ·S}c,
where the notation c · S means {c · λ : λ ∈ S}.

Natural uniqueness requirement. Eventually, we need to select some set S.
As we have just explained, we cannot select one set a priori, since with every
set S, a set c · S also has the same quality. To fix a unique set, we can, e.g., fix
one of the values λ ∈ S. Let us require that with this fixture, we will be end
up with a unique optimal set S. This means, in particular, that, if we select a
real number λ ∈ S, then the only set c ·S that contains this number will be the
same set S.

Let us describe this requirement in precise terms.

Definition 1. By a discrete set, we mean a subset S of the set IR+ of all
positive real numbers for which, for every λ ∈ S, there exists an ε > 0 such that
for every other element λ′ ∈ S, we have |λ− λ′| > ε.

Comment. For such sets, for each element λ, if there are larger elements, then
there is the “next” element – i.e., the smallest element which is larger than λ.
Similarly, if there are smaller elements, then there exists the “previous” element
– i.e., the largest element which is smaller than λ. Thus, such sets have the
form {. . . < λn−1 < λn < λn < . . .}

Notation. For each set S and for each number c > 0, by c ·S, we mean the set

{c · λ : λ ∈ S}.

Definition 2. We say that a discrete set S is —em uniquely determined if for
every λ ∈ S and c > 0, if λ ∈ c · S, then c · S = S.

Proposition 1. A set S is uniquely determined if and only if it is a geometric
progression, i.e., if and only if it has the form

S = {c0 · qn : n = . . . ,−2,−1, 0, 1, 2, . . .}
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for some c0 and q.

Discussion. This results explains why geometric progression is used to select
the LASSO parameter λ.

Proof. It is easy to prove that every geometric progression is uniquely deter-
mined. Indeed, if for λ = c0 ·qn, we have λ ∈ c ·S, this means that λ = c · c0 ·qm
for some m, i.e., c0 · qn = c · c0 · qm. Dividing both sides by c0 · qm, we conclude
that c = qn−m for some integer n−m. Let us show that in this case, c · S = S.
Indeed, each element x of the set c ·S has the form x = c ·c0 ·qk for some integer
k. Substituting c = qn−m into this formula, we conclude that x = c0 · qk+(n−m),
i.e., that x ∈ S. Similarly, we can prove that if x ∈ S, then x ∈ c · S.

Vice versa, let us assume that the set S is uniquely determined. Let us pick
any element λ ∈ S and denote it by λ0. The next element we will denote by
λ1, the next to next by λ2, etc. Similarly, the element previous to λ0 will be
denoted by λ−1, previous to previous by λ−2, etc. Thus,

S = {. . . , λ−2, λ−1, λ0, λ1, λ2, . . .}.

Clearly, λ1 ∈ S, and for q
def
= λ1/λ0, we have λ1 ∈ q · S – since λ1 =

(λ1/λ0) · λ0 = q · λ0 for λ0 ∈ S. Since the set S is uniquely determined, this
implies that q · S = S. Since

S = {. . . , λ−2, λ−1, λ0, λ1, λ2, . . .},

we have
q · S = {. . . , q · λ−2, q · λ−1, q · λ0, q · λ1, q · λ2, . . .}.

The sets S and q ·S coincide. We know that q ·λ0 = λ1. Thus, the element next
to q · λ0 in the set q · S – i.e., the element c · λ1 – must be equal to the element
which is next to λ1 in the set S, i.e., to the element λ2: λ2 = q ·λ1. For next to
next elements, we get λ3 = q · λ2 and, in general, we get λn+1 = q · λn for all n
– which is exactly the definition of a geometric progression.

The proposition is proven.

Comment. Similar arguments can explain why in machine learning methods
such as deep learning (see, e.g., [2]) – which usually use the gradient method

xi+1 = xi − λi ·
∂J

∂xi
to find the minimum of an appropriate objective function

J , empirically the best strategy for selecting λi also follows approximately a
geometric progression: e.g., some algorithms use:

• λi = 0.1 for the first ten iterations,

• λi = 0.01 for the next ten iterations,

• λi = 0.001 for the next ten iterations, etc.

Indeed, in this case, similarly, re-scaling of J is equivalent to re-scaling of λ, and
thus, we need to have a family of sequences {c · λi} corresponding to different
c > 0. A natural uniqueness requirement – as we have shown – leads to the
geometric progression.
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