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Abstract

The prediction of the road’s properties under the influence of water
infiltration is important for pavement design and management. Tradi-
tionally, this prediction heavily relied on expert estimates. In the last
decades, complex empirical formulas have been proposed to capture the
expert’s intuition in estimating the effect of water infiltration on the stiff-
ness of the pavement’s payers. Of special importance is the effect of water
intrusion on the pavement’s foundation – known as subgrade soil. In this
paper, we show that natural scale-invariance ideas lead to a theoretical
explanation for an empirical formula describing the dependence between
soil suction and water content; formulas describing this dependence are
known as soil-water characteristic curves.

1 Formulation of the Problem

Need to take into account water content in road design and manage-
ment. It is important to make sure that the roads retain sufficiently stiff under
all possible weather conditions. Out of different weather conditions, the most
important effect on the road stiffness is produced by rain: rainwater penetrates
the reinforced-soil foundation of the pavement (called subgrade soil) that under-
lies more stiff layers of the road, and the presence of water decreases the road’s
stiffness.

Towards the empirical formulas. The mechanical effect of water can be
described by the corresponding pressure h. In transportation engineering, this
pressure is known as suction.
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This pressure is easy to explain based on every person’s experience of walking
on an unpaved road:

• when the soil is dry, it exerts high pressure on our feet, thus preventing
shoes from sinking, and keeping the surface of the road practically intact;

• on the other hand, when the soil is wet, the pressure drastically decreases;
as a result, the shoes sink into the road, and leave deep tracks.

Similarly, the car’s wheels sink into a wet road and leave deep tracks. The effect
is not so prominent on paved roads, but still moisture affects the road quality.

To describe this effect in quantitative terms – and thus, to predict the effect
of different levels of water saturation – we need to find the relation between
the water content and the suction. Usually, for historical reasons, this effect is
described as the dependence of water content θ on suction h – but we can also
invert this dependence and consider the dependence of suction h on the water
content θ. The dependence of θ on h is known as the soil-water characteristic
curve (SWCC, for short).

Until the 1990s, this dependence was described by a power law θ = c · h−m
for some parameters c and m > 0. (Since the suction decreases with the increase
in water content, the exponent −m should be negative.)

This power law formula was first proposed in [2] by R. H. Brooks and
A. T. Corey. Many empirical studies confirmed this dependence; see, e.g., [3, 4,
6, 7, 8, 13, 17].

This law works reasonably well for intermediate values of θ. However, this
formula is not perfect. For example, for θ → 0, this formula – or, to be precise,
the inverse formula h = const · θ−1/m – implies the physically unreasonable
infinite value of suction pressure. For the important case when the soil is heavily
saturated with water – i.e., when θ is large – it is also not in good accordance
with the empirical data.

As a result of this imperfection, in practice, until the 1990s, the results
of the above power law formula were usually corrected by experts. To get a
better fit with the observations and with the expert estimates, the paper [5] by
D. G. Fredlung and A. Xing proposed a more complex formula

θ = const ·
(
ln(e+ (h/a)b)

)−c
, (1)

for some parameters a, b, and c. This formula has been experimentally confirmed
for a wide range of values of the water content θ; see, e.g., [5, 12, 18]. At present
(2020), this formula – with a minor modification that we will discuss later – is
recommended by the US standards; see, e.g., p. 209 of Appendix DD1 “Resilient
Modulus as Function of Soil Moisture – Summary of Predictive Models” of [10]
and Chapter 5, p. 42 of [9] (see also Section 2.3 of [1]).

Comment. In many applications, to get an even more accurate description,
practitioners multiply the right-hand side of the formula (1) by an additional
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factor

C(h) = 1−
ln

(
1 +

h

hr

)
ln

(
1 +

h0
hr

) (1a)

for some values hr and h0.

How can we explain the empirical formula (1)? Empirically, the formula
(1) works well, but there is no theoretical explanation for this formula. Without
a theoretical explanation, we cannot guarantee that this formula is indeed the
best – and that no new formula would appear which would fit the observations
even better. In general, the presence of a theoretical explanation increases our
confidence in an empirical formula. From this viewpoint, it is desirable to come
up with a theoretical explanation for the formula (1).

Such an explanation is provided in this paper.

2 Analysis of the Problem

Scale-invariance: reminder. Let us start with a general problem of finding
the dependence y = f(x) between two physical quantities x and y.

From the purely mathematical viewpoint, the problem seems straightfor-
ward: we need to find the relation between the two numerical values. However,
from the physical viewpoint, we need to take into account that the same physi-
cal quantity can be represented by different numerical values – the specific value
depends on what measuring unit we select. For example, we can measure dis-
tances in meters or kilometers; the same distance will be represented by different
numbers: 2 km becomes 2000 m. With pressure characteristics (like suction),
we can use Pascals or we can the US unit psi (pounds per square inch). In
general, if we replace the original measuring unit with a different unit which is
λ > 0 times smaller, all numerical values get multiplied by λ: x→ x′ = λ · x.

In many physical situations, there is no selected measuring unit, so the
formulas should not depend on what measuring unit we use. Of course, we
cannot simply require that the formula remains exactly the same if we change
the unit for x: that would means that f(x) = f(λ · x) for all λ and x – and
thus, that f(x) = const, i.e., that there is no dependence at all. In reality, if
we change the unit for x, we need to appropriately change the unit for y. For
example, the formula y = x2 for the area y of a square with side x remains valid
if we switch from meters to centimeters – but then we need to also change the
measuring unit for area from square meters to square centimeters.

So, the desired property takes the following form: for each λ > 0, there
should exist a value µ > 0 such that if y = f(x), then y′ = f(x′), where

x′
def
= λ · x and y′

def
= µ · y. This property is known as scale-invariance.

Which dependencies are scale-invariant? Substituting y′ = µ · y and
x′ = λ · x into the formula y′ = f(x′), we get µ · y = f(λ · x). Here, we have
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y = f(x), so f(λ · x) = µ · f(x). Taking into account that µ depends on λ, we
get the following expression:

f(λ · x) = µ(λ) · f(x). (2)

Small changes in x should cause equally small changes in y, so the dependence
f(x) must be smooth (differentiable). From the formula (2), we can conclude
that the function µ(λ) is equal to the ratio of two differentiable functions µ(λ) =
f(λ · x)

f(x)
and is, thus, differentiable too.

Since both functions f(x) and µ(λ) are differentiable, we can differentiate
both sides of the formula (2) with respect to λ. After plugging in λ = 1, we get

x · df
dx

= a · f,

where we denoted

a
def
=

dµ

dλ |λ=1
.

We can separate the variables in this formula if we divide both sides by f and
by x, then we get:

df

f
= a · dx

x
.

Integrating both sides, we get ln(f) = a · ln(x) + C, where C is the integration
constant. Applying the exponential function to both sides of this formula, we get

f = c · xa, where we denoted c
def
= exp(C). So, every scale-invariant dependence

is a power law.
Vice versa, it is easy to show that very power law has the scale invariance

property.

Need to go beyond scale-invariance. As we have mentioned earlier, histor-
ically the first formulas for describing the soil-water characteristic curves were
indeed the power law formulas – and the above derivation explains why these
formula provide a good first approximation. However, as we also mentioned
earlier, the power law is a crude approximation, we need to go beyond power
laws. How can we do that?

A natural idea is to take into account that in nature, dependencies are rarely
direct: usually, when we see that a change in a quantity x leads to a change in
a quantity y, this means that:

• a change in x changes some intermediate quantity x1,

• the change in x1, in turn, leads to the change in some other intermediate
quantity x2, etc.,

• until we finally teach some quantity xk that directly affects y.

To describe this complex dependence, we need to describe:
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• how x1 depends on x, we will denote the corresponding dependence by
x1 = f1(x),

• how x2 depends on x1, we will denote the corresponding dependence by
x2 = f2(x1), etc.,

• and how y depends on xk, we will denote the corresponding dependence
by y = fk+1(xk).

Then, we have

y = fk+1(xk) = fk+1(fk(xk−1)) = . . . = fk+1(fk(. . . f2(f1(x)) . . .)).

In other words, the function f(x) describing the (indirect) dependence between x
and y is a composition of several functions f1(x), f2(x1), . . . , fk+1(xk) describing
direct dependencies.

At first glance, it is reasonable to assume – as we did earlier – that all the
direct dependencies are scale-invariant and are, thus, described by power laws.
However, one can easily check that a composition of power laws is also a power
law: indeed, e.g., if x1 = f1(x) = c1 · xa1 and x2 = f2(x1) = c2 · xa21 , then

x2 = c2 · (c1 · xa1)
a2 = (c1 · ca21 ) · xa1·a2 ,

i.e., the dependence of x2 on x has the form x2 = c · xa, where c = c2 · ca21 and
a = a1 · a2. Thus, the above idea does not allow us to go beyond power laws.

To go beyond power laws, we therefore need, at least for one of the interme-
diate dependencies, to go beyond scale-invariance.

How to go beyond scale-invariance? Scale-invariance assumes that we have
a fixed starting point for measuring a quantity. This is true for most physical
quantities, but for some physical quantities, we can select different starting
points. For example, for measuring temperature, we can select, as a starting
point, the temperature at which water freezes – and get the usual Celsius scale
– or we can select the absolute zero and thus get the Kelvin scale. For different
purposes, different starting points may be more appropriate.

If we change a starting point for measuring x to a different starting point
which is x0 units smaller the original one, then this value x0 will be added to
all numerical values of this quantity: x → x′ = x + x0, so that x = x′ − x0.
Similarly, if we change a starting point for measuring y to a different starting
point which is y0 units smaller than the original one, then this value y0 will be
added to all numerical values of this quantity: y → y′ + y0, so that y − y′ − y0.

If in the new units x′ and y′, we have a power law dependence y′ = c · (x′)a
(motivated by scale-invariance), then in the original units x and y, we will have

y = y′ − y0 = c · (x′)a − y0 = c · (x+ x0)a − y0,

i.e., the form
y = c · (x+ x0)a − y0. (3)
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It is thus reasonable to replace one of the intermediate power-law dependencies
with this more general formula.

Which value a should we choose for this modified intermediate de-
pendence: general idea. In our analysis, we can use an observation (made in
the 1980s by B. S. Tsirelson [16]) that in many cases, when we reconstruct the
signal from the noisy data, and we assume that the resulting signal belongs to a
certain class, the reconstructed signal is often an extreme point from this class;
see also [11, 15]. The paper [16] provided the following geometric explanation to
this fact: namely, when we reconstruct a signal from a mixture of a signal and
a Gaussian noise, then the maximum likelihood estimation (a traditional statis-
tical technique; see, e.g., [14]) means that we look for a signal which belongs to
the (a priori determined) class of signals, and which is the closest – in the sense
of the usual Euclidean distance – to the observed signal-plus-noise combination.

In particular, if the signal is determined by finitely many (say, d) parameters,
we must look for a signal ~s = (s1, . . . , sd) from the a priori set A ⊆ Rd that is
the closest (in the usual Euclidean sense) to the observed values

~o = (o1, . . . , od) = (s1 + n1, . . . , sd + nd),

where ni denotes the (unknown) values of the noise.
Since the noise is Gaussian, we can usually apply the Central Limit Theorem

[14] and conclude that the average value of (ni)
2 is close to σ2, where σ is the

standard deviation of the noise. In other words, we can conclude that

(n1)2 + . . .+ (nd)
2 ≈ d · σ2.

In geometric terms, this means that the distance√√√√ d∑
i=1

(oi − si)2 =

√√√√ d∑
i=1

n2i

between ~s and ~o is ≈ σ ·
√
d. Let us denote this distance σ ·

√
d by ε.

Let us first, for simplicity, consider the case when d = 2, and when A is a
convex polygon. Then, we can divide all points p from the exterior of A that
are ε-close to A into several zones depending on what part of A is the closest
to p:

• one of the sides, or

• one of the edges.

Geometrically, the set of all points for which the closest point a ∈ A belongs
to the side e is bounded by the straight lines orthogonal (perpendicular) to e.
The total length of this set is therefore equal to the length of this particular
side; hence, the total length of all the points that are the closest to all the sides
is equal to the perimeter of the polygon. This total length thus does not depend
on ε at all.
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On the other hand, the set of all the points at the distance ε from A grows
with the increase in ε; its length grows approximately as the length of a circle,
i.e., as const·ε.

When ε increases, the (constant) perimeter is a vanishing part of the total
length. Hence, for large ε:

• the fraction of the points that are the closest to one of the sides tends to
0, while

• the fraction of the points p for which the closest is one of the edges tends
to 1.

Similar arguments can be repeated for any dimension. For the same noise
level σ, when d increases, the distance ε = σ ·

√
d also increases, and therefore,

for large d, for “almost all” observed points ~o, the reconstructed signal is one of
the extreme points of the a priori set A.

Which value a should we choose for this modified intermediate de-
pendence: specifics. Let us apply the above general idea to our specific case.
In this case, the value a can take any values from 0 to ∞, so the extreme cases
are a = 0 and a =∞.

Of course, literally taking a = 0 or a = ∞ makes no sense, since for each
value x+x0, the power (x+x0)0 is simply equal to 1 – i.e., does not depend on x
at all, while (x+x0)∞ is either 0 (if |x+x0| < 1) or infinity (if |x+x0| > 1). So,
to get non-trivial expressions, instead of directly substituting a = 0 or a = ∞
into the above formula, we need to consider limit cases when a→ 0 or a→∞.

Let us first consider the case a→ 0. In general, we have

(x+ x0)a = (exp(ln(x+ x0)))a = exp(a · ln(x+ x0)).

For small a ≈ 0, we can expand this expression in Taylor series and keep only
linear terms in this expression:

(x+ x0)a ≈ 1 + a · ln(x+ x0).

Thus, for small a, the expression (3) tends to a linear transformation of a loga-
rithm:

y = c0 + c1 · ln(x+ x0). (4)

The case when a→∞ can be obtained from this case if we take into account
that when y is related to x by a formula (3) with some a, then x is related to y by
a similar formula, but with an exponent 1/a. When a→ 0, then 1/a→∞. So,
the limit dependence corresponding to a→∞ is the inverse of the dependencies
corresponding to a→ 0, i.e., a linear transformation of the exponential function:

y = c0 + c1 · exp(k · x). (5)
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What is the resulting dependence. We started with the case when we have
several sequential transformations, all of which are power laws. In this case, the
resulting dependence of y on x is still a power law. To get beyond the power
laws, we decided to consider the case when on the intermediate transformations
has a more general form (3) – and we argued that the most probable cases are
extreme cases a → 0 or a → ∞ that are described by formulas (4) and (5).
What will then be the resulting dependence between x and y?

Let us start with considering the case when the intermediate transformation
is described by a logarithm formula (4). In this case,

• first, we have several power-law transformations, which, as we have learned,
are equivalent to a single power-law transformation; as a result, the orig-
inal value x is transformed into a new value x1 = a1 · xb1 for some a1
and b1;

• then, to the resulting value x1, we apply the logarithm transformation (3),
resulting in

x2 = c0 + c1 · ln(x1 + x0) = c0 + c1 · ln(a1 · xb1 + x0);

• finally, we again have several power-law transformations, which are equiv-
alent to a single power-law transformation y = a3 · xb32 for some values a3
and b3, resulting in

y = a3 · (c0 + c1 · ln(a1 · xb1 + x0))b3 . (6)

Let us simplify this formula. Let us simplify this formula, to make it closer
to the desired formula (1). First, we can represent a1 ·xb1 +x0 as c2 ·(a′1 ·xb1 +e),

where we denoted c1
def
=

x0
e

and a′1
def
=

a1
c2

=
a1 · e
x0

. Then,

ln(a1 · xb1 + x0) = ln(c2 · (a′1 · xb1 + e)) = ln(c2) + ln(e+ a′1 · xb1),

and thus,

c0 + c1 · ln(a1 · xb1 + x0) = c0 + c1 · ln(c2) + c1 · ln(e+ a′1 · xb1),

i.e.,
c0 + c1 · ln(a1 · xb1 + x0) = c′0 + c1 · ln(e+ a′1 · xb1),

where we denoted c′0
def
= c0 + ln(c2). This expression, in turn, can be described

as

c0 + c1 · ln(a1 · xb1 + x0) = c′0 + c1 · ln(e+ a′1 · xb1) = c1 · (ln(e+ a′1 · xb1) + c′′0),

where c′′0
def
= c′0/c1. Thus,

(c0 + c1 · ln(a1 · xb1 + x0))b3 = cb31 · (ln(e+ a′1 · xb1) + c′′0)b3 .
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Multiplying both sides by a3, we conclude that the formula (6) can be described
in the following form

y = a′3 · (ln(e+ a′1 · xb1) + c′′0)b3 , (7)

where a′3
def
= a3 · cb31 .

This is (almost) exactly what we want. The empirical formula (1) can be
viewed as a particular case of the above formula (7), with c′′0 = 0, a′3 = const,
a1 = a−b, and b3 = −c.

Vice versa, any expression (7) with c′′0 = 0 has the form (1). So, we (almost)
have what we want: a theoretically justified formula: the only difference is that
our formula has one more parameter c′′0 . Who knows, maybe empirically, we
can find some non-zero value of this parameter for which this formula will be
even more accurate than the original empirical formula (1)?

Comments.

• When we describe limit cases of scale-invariance, we had a choice:

– we could have a logarithmic dependence, or

– we could have the inverse (exponential) dependence.

Which dependence we choose depends on which of two quantities we con-
sider as input and which as output. If instead of the dependence θ(h),
we will consider the inverse dependence h(θ), then we will get exponential
function instead of the logarithmic one. Which of the two dependencies
θ(h) or h(θ) is logarithmic and which is exponential cannot be determined
purely theoretically, since we assume the same scale-invariance property
for both quantities; this must be determined empirically. In this particular
case, the dependence θ(h) is logarithmic.

• The additional factor (1a) can also be explained the same way: as one
can see, it is exactly one of the two limit cases of power law dependency:
namely, the logarithmic limit case (4).
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