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Optimal Search under Constraints

Martine Ceberio, Olga Kosheleva, and Vladik Kreinovich

Abstract In general, if we know the values a and b at which a continuous function
has different signs – and the function is given as a black box – the fastest possible
way to find the root x for which f (x) = 0 is by using bisection (also known as
binary search). In some applications, however – e.g., in finding the optimal dose of
a medicine – we sometimes cannot use this algorithm since, for avoid negative side
effects, we can only try value which exceed the optimal dose by no more than some
small value δ > 0. In this paper, we show how to modify bisection to get an optimal
algorithm for search under such constraint.

1 Where This Problem Came From

Need to select optimal dose of a medicine. This research started with a simple
observation about how medical doctors decide on the dosage. For many chronic
health conditions like high cholesterol, high blood pressure, etc., there are medicines
that bring the corresponding numbers back to normal. An important question is how
to select the correct dosage:

• on the one hand, if the dosage is too small, the medicine will not have the full
desired effect;

• on the other hand, we do not want the dosage to be higher than needed: every
medicine has negative side effects, side effects that increase with the increase in
dosage, and we want to keep these side effects as small as possible.

In most such cases, there are general recommendations providing a range of possible
doses depending on the patient’s age, weight, etc., but a specific dosage within this

Martine Ceberio, Olga Kosheleva, and Vladik Kreinovich
University of Texas at El Paso, 500 W. University, El Paso, TX 79968, USA
e-mail: mceberio@utep.edu, olgak@utep.edu, vladik@utep.edu

1



2 Martine Ceberio, Olga Kosheleva, and Vladik Kreinovich

range has to be selected individually, based on how this patient’s organism reacts to
this medicine.

How the first doctor selected the dose. It so happened that two people having
similar conditions end up with the same daily dosage of 137 units of medicine, but
interestingly, their doctors followed a different path to this value.

For the first patient, the doctor seems to have followed the usual bisection algo-
rithm:

• this doctor started with the dose of 200 – and it worked,
• so, the doctor tried 100 – it did not work,
• the doctor tried 150 – it worked,
• the doctor tried 125 – it did not work,
• so, the doctor tried 137 – and it worked.

The doctor could have probably continued further, but the pharmacy already had
trouble with maintaining the exact dose of 137, so this became the final arrangement.

This procedure indeed follows the usual bisection (= binary search) algorithm
(see, e.g., [1]) – which is usually described as a way to solve the equation f (x) = 0
when we have an interval [a,b] for which f (a)< 0 < f (b). In our problem, f (a) is
the difference between the effect of the dose a and the desired effect:

• if the dose is not sufficient, this difference is negative, and
• if the dose is sufficient, this difference is non-negative (positive or 0).

In the bisection algorithm, at each iteration, we have a range [x,x] for which f (x)< 0
and f (x) > 0. In the beginning, we have [x,x] = [a,b]. At each iteration, we take a

midpoint m =
x+ x

2
and compute f (m). Depending on the sign of f (m), we make

the following changes:

• if f (m)< 0, we replace x with m and thus, get a new interval [m,x];
• if f (m)> 0, we replace x with m and thus, get a new interval [x,m].

In both cases, we decrease the width of the interval [x,x] by half. We stop when
this width becomes smaller than some given value ε > 0; this value represents the
accuracy with which we want to find the solution.

In the above example, based on the first experiment, we know that the desired
dose is within the interval [0,200]. So:

• we try m = 100 and, after finding that f (m) < 0 (i.e., that the dose m = 100 is
not sufficient), we come up with the narrower interval [100,200];

• then, we try the new midpoint m = 150, and, based on the testing result, we come
up with the narrower interval [100,150];

• then, we try the new midpoint m = 125, and, based on the testing result, we come
up with the narrower interval [125,150];

• in the last step, we try the new midpoint m = 137 (strictly speaking, it should
be 137.5, but, as we have mentioned, the pharmacy cannot provide such an
accuracy); now we know that the desired value is within the narrower interval
[125,137].
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Out of all possible values from the interval [125,137], the only value about which we
know that this value is sufficient is the value 137, so this value has been prescribed
to the first patient.

The second doctor selected the same dose differently. Interestingly, for the second
patient, the process was completely different:

• the doctor started with 25 units;
• then – since this dose was not sufficient – the dose was increased to 50 units;
• then the dose was increased to 75, 100, 125 units, and, finally, to 150 units.

The 150 units dose turned out to be sufficient, so the doctor knew that the optimal
dose is between 125 and 150. Thus, this doctor tried 137, and it worked.

Comment. Interestingly, in contrast to the first doctor, this doctor could not convince
the pharmacy to produce a 137 units dose. So this doctor’s prescription of this dose
consists of taking 125 units and 150 units in turn.

Why the difference? Why did the two doctors use different procedures?
Clearly, the second doctor needed more steps – and longer time – to come up

with the same optimal dose: this doctor used 7 steps (25, 50, 75, 100, 125, 150, 137)
instead of only 5 steps used by the first doctor (200, 100, 150, 125, 137). Why did
this doctor not use a faster bisection procedure?

At first glance, it may seem that the second doctor was not familiar with bisection
– but clearly this doctor was familiar with it, since, after realizing that the optimal
does is within the interval [125,150], he/she checked the midpoint dose of 137.

The real explanation of why the second doctor did not use the faster procedure
is that the second doctor was more cautious about possible side effects – probably,
in this doctor’s opinion, the second patient was vulnerable to possible side effects.
Thus, this doctor decided not to increase the dose too much beyond the optimal
value, to minimize possible side effects – while the first doctor, based on the overall
health of the first patient, was less worried about possible side effects.

Natural general question. A natural next question is: under such restriction on
possible tested values x, what is the optimal way to find the desired solution (i.e., to
be more precise, the desired ε-approximation to the solution)?

It is known that if we do not have any constraints, then bisection is the optimal
way to find the solution to the equation f (x) = 0; see, e.g., [1]. So, the question is –
how to optimally modify bisection under such constraints?

2 Precise Formulation of the Problem and the Optimal
Algorithm

Definition 1. Let f (x) be a function from real numbers to real numbers, and let
δ > 0 be a real number. We say that a number x is δ - f -legitimate if x ≤ x0 +δ for
some number x0 for which f (x0) = 0.
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Definition 2. By search under constraints, we mean the following problem:

• Given:

– (computable) real numbers a < b, ε > 0, and δ > 0, and
– an algorithm that – for some continuous function f (x) for which f (a) < 0 <

f (b) – given a δ - f -legitimate value x, checks whether f (x)< 0 or f (x)≥ 0.

• Find: a value x such that f (x) ≥ 0 and |x− x0| ≤ ε for some value x0 for which
f (x0) = 0.

Comment. The corresponding algorithm can ask, given a δ - f -legitimate value x,
whether f (x)< 0 or not. Each such call to f will be counted as one step.

Definition 3. We say that an algorithm for solving search-under-constraints prob-
lems is (asymptotically) optimal if:

• this algorithm always produces the solution, and
• for each instance (a,b, f ,δ ) of the search under constraints problem, this al-

gorithms uses, for all sufficiently small ε , the smallest possible number of calls
to f .

Proposition 1. The following is the optimal algorithm for solving search-under-
constraints problems:

• First, for the values ai
def
= a+ i · δ for i = 1,2, . . ., if ai < b, we check whether

f (ai)< 0. We stop:

– either when we found i for which f (ai)≥ 0
– or if we exhausted all i’s without finding such an i, i.e., if we have f (ai) < 0

and a+(i+1) ·δ ≥ b.

• If we have stopped because we found i for which f (ai)≥ 0, then we apply bisec-
tion to the interval [ai−1,ai] to find the desired solution.

• If we have stopped because we have reached i for which f (ai) < 0 and b <
a+(i+1) ·δ , then we apply bisection to the interval [ai,b].

Comments.

• This is exactly what the second doctor did, with δ = 25.
• When δ is large enough, i.e., when δ ≥ b−a and thus, a+δ ≥ b, this algorithm

becomes the bisection – exactly what the first doctor did.

Proof of Proposition 1: main idea. Let us first show that this algorithm is legiti-
mate, i.e., that in this algorithm, we only test whether f (x) < 0 for δ - f -legitimate
values x. Indeed, if we know that f (x)< 0 for some x, then, since f (x)< 0 < f (b),
there exists a value x0 ∈ [x,b] for which f (x0) = 0. So, for x′ = x+δ , from x ≤ x0,
we conclude that x′ ≤ x0 + δ . Thus, after we found out that f (ai) < 0 checking
whether f (ai+1)< 0 for ai+1 = ai +δ is δ - f -legitimate.
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The faster we get to some δ - f -legitimate value x for which f (x) ≥ 0, the faster
we will find the solution. Can we go faster than by increasing by δ every time? Not
really. Indeed, if we take x′ > x+ δ , then it is easy to come up with a piece-wise
linear monotonic function f (x) for which the only root x0 if x0 = x+(x′−(x+δ ))/2.
In this case, we will have

x′− (x0 +δ ) = (x′− (x+δ ))− (x0− x) = (x′− (x+δ ))/2 > 0,

so x′ > x0 +δ and asking whether f (x′)> 0 is not legitimate.
We cannot go faster than by increasing the value by δ , and increasing by δ is

legitimate, so to find the result as fast as possible, we should increase exactly by δ

every time – exactly as our algorithm does.
One can easily check that if a value x is δ - f -legitimate, then all smaller values are

also δ - f -legitimate. Thus, once we have found a δ - f -legitimate value x for which
f (x) ≥ 0, we can use the optimal bisection algorithm – since all the values that we
try in this algorithm will also be δ - f -legitimate.

The proposition is proven.
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