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Equations for Which Newton’s Method Never
Works: Pedagogical Examples

Leobardo Valera, Martine Ceberio, Olga Kosheleva, and Vladik Kreinovich

Abstract One of the most widely used methods for solving equations is the clas-
sical Newton’s method. While this method often works – and is used in computers
for computations ranging from square root to division – sometimes, this method
does not work. Usual textbook examples describe situations when Newton’s method
works for some initial values but not for others. A natural question that students of-
ten ask is whether there exist functions for which Newton’s method never works –
unless, of course, the initial approximation is already the desired solution. In this
paper, we provide simple examples of such functions.

1 Formulation of the Problem

Newton’s method: a brief reminder. One of the most widely used methods for
finding a solution to a non-linear equation f (x) = 0 is a method designed many
centuries ago by Newton himself; see, e.g., [1]. This method is based on the fact

that the derivative f ′(x) is defined as the limit of the ratio
f (x+h)− f (x)

h
when h

tends to 0. This means that for small h, the derivative is approximately equal to this

ratio. In this approximation, f ′(x) ≈ f (x+h)− f (x)
h

. Multiplying both sides by h,

we get f ′(x) ·h≈ f (x+h)− f (x). Thus, adding f (x) to both sides, we get

f (x+h)≈ f (x)+h · f ′(x). (1)

Suppose that we know some approximation xk to the desired value x. For this
approximation, f (xk) is not exactly equal to 0. To make the value f (x) closer to 0, it
is therefore reasonable to make a small modification of the current approximation,
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i.e., take xk+1 = xk + h. For this new value, according to the formula (1), we have
f (xk+1)≈ f (xk)+h · f ′(xk). To get the value f (xk+1) as close to 0 as possible, it is
therefore desirable to take h for which

f (xk)+h · f ′(xk) = 0,

i.e., to take h =− f (xk)

f ′(xk)
. Thus, for the next approximation xk+1 = xk +h, we get the

following formula:

xk+1 = xk−
f (xk)

f ′(xk)
. (2)

This is exactly what Newton has proposed.
If this method converges precisely – in the sense that we have xk+1 = xk, then,

from the formula (2), we conclude that f (xk) = 0, i.e., that xk is the desired solution.
If this method converges approximately, i.e., if the difference xk+1−xk is very small,
then, from the formula (2), we conclude that the value f (xk) is also very small, and
thus, we have a good approximation to the desired solution.

This method is still actively used to solve equations. In spite of this method being
centuries old, it is still used to solve many practical problems. For example, this
is how most computers compute the square root of a given number a, i.e., how
computers compute the solution to the equation f (x) = 0 with f (x) = x2− a. For
this function f (x), we have f ′(x) = 2x, thus Newton’s formula (2) takes the form

xk+1 = xk−
x2

k−a
2xk

. (3)

This formula can be further simplified if we take into account that
x2

k
2xk

=
xk

2
and

thus, the formula (3) can be transformed into the following simplified form:

xk+1 =
1
2
·
(

xk +
a
xk

)
. (4)

The formula (4) is indeed faster to compute than the formula (3): both formulas
require one division, but (3) also requires one multiplication (to compute x2

k) and two
subtractions, while (4) needs only one addition. (Both formula need multiplication
or division by 2, but for binary numbers, this is trivial – just shifting by 1 bit to the
left or to the right.)

The resulting iterative process (4) converges fast. For example, to compute the
square root of a = 2, we can start with x0 = 1 and get

x1 =
1
2
·
(

1+
2
1

)
= 1.5

and



Equations for Which Newton’s Method Never Works: Pedagogical Examples 3

x2 =
1
2
·
(

1.5+
2

1.5

)
= 1.4166 . . . ,

i.e., in only two iterations, we already have the first three digits of the correct answer√
2 = 1.414 . . .
Newton’s method also lies behind the way computers divide. To be more precise,

computes compute the ratio
a
b

by first computing the inverse
1
b

, and then multi-
plying a by this inverse. To compute the inverse, computers contain a table of pre-
computed values of the inverse for several fixed values Bi, and, then, for b≈ Bi, use

the recorded inverse
1
Bi

as the first approximation x0 in the Newton’s method. In

this case, the desired equation has the form b · x− 1 = 0, i.e., here f (x) = b · x− 1.
The actual derivative f ′(x) is equal to b, i.e., ideally we should have

xk+1 = xk−
1
b
· (b · x j−1). (5)

This may sound reasonable, but since the whole purpose of this algorithm is to

compute the inverse value
1
b

, we do not know it yet and thus, we cannot use the
above formula directly. What we do know, at this stage, is the current approximation

xk to the desired inverse value
1
b

. So, a natural idea is to use xk instead of the inverse
value in the formula (5). Then, we get exactly the from of Newton’s method that
computers use to compute the inverse:

xk+1 = xk− (b · xk−1) · xk. (6)

It should be mentioned that, similar to the expression (3), this expression can also
be further simplified, e.g., to

xk+1 = xk · (2−b · xk). (7)

Both formulas (6) and (7) require two multiplications, but (7) is slightly faster to
compute since this formula requires only one subtraction, while the formula (6)
requires two subtractions.

Sometimes, Newton’s method does not work. While Newton’s method is efficient,
there are examples when it does not work – such examples are usually given in
textbooks, explaining the need for alternative techniques.

Sometimes, this happens because the values xk diverge – i.e., become larger and
larger with each iteration, never converging to anything. Sometime, this happens
because the values xk from a loop: we get x0, . . . , xk−1, and then we again get
xk = x0, xk+1 = x1, etc. – and the process also never converges.

A natural question. The textbook examples usually show that whether Newton’s
method is successful depends on how close is the initial approximation x0 to the
actual solution:



4 Leobardo Valera, Martine Ceberio, Olga Kosheleva, and Vladik Kreinovich

• if x0 is close to x, then usually, Newton’s method converges, while
• if the initial approximation x0 is far away from the actual solution x, Newton’s

method starts diverging.

A natural question – that students sometimes ask – is whether this is always the
case, or whether there are examples when Newton’s method never converges.

What we do in this paper. In this paper, we provide examples when Newton’s
method never converges, no matter what initial approximation x0 we take – unless,
of course, we happen to take exactly the desired solution x as the first approximation,
i.e., unless x0 = x.

2 First Example

Let us look for a simple example. Let us first look for examples in which the equa-
tion f (x) = 0 has only one solution. For simplicity, let us assume that the desired
solution is x = 0.

Again, for simplicity, let us consider odd functions f (x), i.e. functions for which
f (−x) =− f (x). Let us also consider the simplest possible case when the Newton’s
method does not converge: when the iterations xk form a loop, and let us consider
the simplest possible loop, when we have x0, x1 6= x0, and then again x2 = x0, etc.

How to come up with such a simple example. In general, the closer x0 to the
solution, the closer x1 will be. If x1 was on the same side of the solution as x0, then:

• if x1 < x0, we would eventually have convergence, and
• if x1 > x0, we would have divergence,

but we want a loop. Thus, x1 should be on the other side of x0.
Since the function f (x) is odd, the dependence of x2 on x1 is exactly the same as

the dependence of x1 on x0. So:

• if |x1|< |x0|, we would have convergence, and
• if |x1|> |x0|, we would have divergence.

The only way to get a loop is thus to have |x1|= |x0|.
Since the values x0 and x1 are on the other solution of the solution x = 0, this

means that we must have x1 = −x0. According to the formula (2), we have x1 =

x0−
f (x0)

f ′(x0)
. Thus, the desired equality x1 =−x0 means that −x0 = x0−

f (x0)

f ′(x0)
. We

want to have an example in which the Newton’s process will loop for all possible
initial values x0 – except, of course, for the case x0 = 0. Thus, the above equality
must hold for all real numbers x 6= 0:

−x = x− f (x)
f ′(x)

. (8)
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Let us solve this equation. By moving the ratio the left-hand side and −x to the
right-hand side, we get

2x =
f

d f
dx

,

i.e., 2x =
f ·dx
d f

. We can now separate the variables x and f if we multiply both

sides by d f and divide both sides by f and by 2x. As a result, we get
d f
f

=
dx
2x

.

Integrating both sides, we get ln( f ) =
1
2
· ln(x)+C, where C is the integration con-

stant. Applying exp(z) to both sides of this equality, we get f (x) = c ·
√

x, where

c def
= exp(C). Since we want an odd function, we thus get

f (x) = c · sign(x) ·
√
|x|, (9)

where sign(x) = 1 for x > 0 and sign(x) =−1 for x < 0.
Of course, if we shift the function by some value a, we get a similar behavior.

Thus, in general, we have a 2-parametric family of functions for which the Newton’s
method always loops:

f (x) = c · sign(x) ·
√
|x−a|. (10)

Comment. Interestingly, the simplest example on which Newton’s method never
works – the example of a square root function f (x) – is exactly inverse to the
simplest example of a function f (x) = x2 for which the Newton’s method works
perfectly.

3 Other Examples

Can we have other examples? Can we have similar always-looping examples for
other functions, not just for the square root? Indeed, suppose that we have a non-
negative function f (x) defined for non-negative x, for which f (0) = 0 and for which,
for each x0 > 0, the next step of the Newton’s method leads to the value x1 < 0 –
i.e., for which always

x− f (x)
f ′(x)

< 0. (11)

This inequality can be reformulated as f ′/ f < x, i.e., as
ln( f )
ln(x)

< 1, i.e., the re-

quirement that in the log-log scale, the slope is always smaller than 1.

We will also assume that the difference x− f (x)
f ′(x)

monotonically depends on x.
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How to design such lopping examples. We would like to extend the function f (x)
to negative values x in such a way that the Newton’s process will always loop. For
convenience, let us denote, for each x > 0, F(x) def

= − f (−x), where f (−x) is the
desired extension. Then, for x < 0, we have f (x) =−F(−x).

When we start with the initial value x > 0, the next iteration is −y, where we
denoted

y =
f (x)
f ′(x)

− x. (12)

Then, if we want the simplest loop, on the next iteration, we should get back the
value x, i.e., we should have

x = (−y)− f ′(−y)
f ′(−y)

.

Substituting f (x) =−F(−x) into this equality, we get

x =
F(y)
F ′(y)

− y,

i.e., equivalently,
F ′(y)
F(y)

=
1

x+ y

and thus,

F ′(y) =
F(y)
x+ y

, (13)

where y(x) is determined by the formula (12).
We thus have a differential equation that enables us to reconstruct, step-by-step,

the desired function F(y) and thus, the desired extension of f (x) to negative values.

Specific examples. For example, when f (x) = xa for some a> 0, the inequality (11)
implies that a < 1. One can check that in this case, we can take F(y) = y1−a, i.e.,
extend this function to negative values x as f (x) =−|x|1−a.

In particular, for a = 1/2, we get the above square root example.
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