University of Texas at El Paso

ScholarWorks@UTEP

Departmental Technical Reports (CS) Computer Science

4-2020

Which Algorithms Are Feasible and Which Are Not: Fuzzy
Techniques Can Help in Formalizing the Notion of Feasibility

Olga Kosheleva
The University of Texas at El Paso, olgak@utep.edu

Vladik Kreinovich
The University of Texas at El Paso, vladik@utep.edu

Follow this and additional works at: https://scholarworks.utep.edu/cs_techrep

b Part of the Computer Sciences Commons
Comments:
Technical Report: UTEP-CS-20-29

Recommended Citation

Kosheleva, Olga and Kreinovich, Vladik, "Which Algorithms Are Feasible and Which Are Not: Fuzzy
Techniques Can Help in Formalizing the Notion of Feasibility" (2020). Departmental Technical Reports
(CS). 1413.

https://scholarworks.utep.edu/cs_techrep/1413

This Article is brought to you for free and open access by the Computer Science at ScholarWorks@UTEP. It has
been accepted for inclusion in Departmental Technical Reports (CS) by an authorized administrator of
ScholarWorks@UTEP. For more information, please contact Iweber@utep.edu.


https://scholarworks.utep.edu/
https://scholarworks.utep.edu/cs_techrep
https://scholarworks.utep.edu/computer
https://scholarworks.utep.edu/cs_techrep?utm_source=scholarworks.utep.edu%2Fcs_techrep%2F1413&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/142?utm_source=scholarworks.utep.edu%2Fcs_techrep%2F1413&utm_medium=PDF&utm_campaign=PDFCoverPages
https://scholarworks.utep.edu/cs_techrep/1413?utm_source=scholarworks.utep.edu%2Fcs_techrep%2F1413&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:lweber@utep.edu

Which Algorithms Are Feasible and Which Are
Not: Fuzzy Techniques Can Help in Formalizing
the Notion of Feasibility

Olga Kosheleva and Vladik Kreinovich

Abstract Some algorithms are practically feasible, in the sense that for all inputs
of reasonable length they provide the result in reasonable time. Other algorithms
are not practically feasible, in the sense that they may work well for small-size in-
puts, but for slightly larger — but still reasonable-size — inputs, the computation time
becomes astronomical (and not practically possible). How can we describe practi-
cal feasibility in precise terms? The usual formalization of the notion of feasibility
states that an algorithm is feasible if its computation time is bounded by a polyno-
mial of the size of the input. In most cases, this definition works well, but sometimes,
it does not: e.g., according to this definition, every algorithm requiring a constant
number of computational steps is feasible, even when this number of steps is larger
than the number of particles in the Universe. In this paper, we show that by using
fuzzy logic, we can naturally come up with a more adequate description of practical
feasibility.

1 Formulation of the Problem

Some algorithm are feasible and some are not. Computer scientists have invented
many different algorithms. Some of these algorithm are practically feasible, in the
sense that for inputs of reasonable size, they require reasonable (and practically
implementable) time. Examples of such algorithms include different algorithms for
search, for sorting, for solving systems of linear equations, etc.; see, e.g., [2].

On the other hand, there are algorithms which always produce the correct results
but which, in practice, only work for small size inputs — otherwise, they require an
unrealistic amount of computation time. A good example is an exhaustive search al-
gorithm for solving the propositional satisfiability problem — given a propositional

Olga Kosheleva and Vladik Kreinovich
University of Texas at El Paso, 500 W. University
El Paso, TX 79968, USA, e-mail: olgak @utep.edu, vladik @utep.edu



2 Olga Kosheleva and Vladik Kreinovich

formula (i.e., an expression obtained from Boolean (yes-no) variables v1,...,v, by
using “and”, “or”, and “not”), find the values of these variables that make the for-
mula true. In principle, we can solve this problem by trying all 2" possible tuples
of values (vy,...,v,) — each variable has two possible values (true of false), so the
tuple has 2" possible values.

e It works for n = 10, when we need 2!° ~ 103 computational steps.

e Tt works for n = 20, when we need 22° ~ 10° steps.

e It works for n = 30, when we need 230 ~ 10° computational steps, one second or
less on a usual GigaHerz computer.

However, already for a very reasonable size input n = 300, we will need 23 ~ 1000
computational steps — which would require time which is much much longer than
the lifetime of the Universe. So this algorithm is clearly not practically feasible.

It is desirable to have a precise definition of feasibility. It would be nice to know
which algorithm is practically feasible and which is not. It is not easy to make such a
conclusion based on the above description of practical feasibility, since this descrip-
tion uses imprecise works like “reasonable”. To make the corresponding conclusion,
it is desirable to have a precise definition of what is feasible.

How is the notion of feasibility described now. The existing formal definition of
feasibility is based on the following fact:

o for the vast majority of practically feasible algorithms — including search, sorting,
solving systems of linear equations — the worst-case computation time ¢(n) on
inputs of size n is bounded by some polynomial of n, while

e for the vast majority of not practically feasible algorithms — like the above-
described exhaustive search algorithm — the worst-case computation time is ex-
ponential — or at least grows faster than any polynomial.

Because of this fact, formally, an algorithm is called feasible if its worst-case com-
putation time 7(n) is bounded by some polynomial — i.e., if there exists a polynomial
P(n) for which t(n) < P(n) for all n; see, e.g., [4, 8].

The current formal definition is not fully adequate. In many cases, the above for-
mal definition correctly describes what is feasible and what is not feasible. However,
there are cases when this definition does not adequately describe practical feasibil-
ity. Let us give two examples:

e whent(n) = 10'%. 5, this expression is a polynomial — so it is feasible according
to the current formal definition — but it is clearly not practically feasible, since
even for inputs of length 1, this algorithm requires impossible 10'%° steps to
finish; similar arguments can be given if #(n) is a large constant — e.g., if 1(n) =
1019 for all input sizes n;

e on the other hand, when #(n) = [exp(1072° - n)], then, strictly speaking, it is an
exponential function, so it grows faster than any polynomial (and is, thus, not
feasible in the sense of the formal definition), but even when we input the whole
body of current knowledge, with n = 10'8, this algorithm will work really fast —
in [exp(10720-10'8)] = [exp(0.01)] = 2 steps.



Which Algorithms Are Feasible and Which Are Not 3

So, we arrive at a natural question.

A natural question, and what we do in this paper. Can we come up with an alter-
native precise definition of feasibility that would be more adequate? In this paper,
we show that fuzzy techniques (see, e.g., [1, 3, 5, 6, 7, 9]) can help in providing such
a definition.

2 Analysis of the Problem and Possible Solution

Natural idea: using fuzzy techniques. The informal description of practical fea-
sibility uses the natural-language word “reasonable”. Like many other natural-
language words — like “small”, “large”, etc. — this word is not precise. Different
people may disagree on what is reasonable, and for large but not too large sizes n,
even a single person can be unsure whether this size is reasonable or not.

It is precisely to deal with such imprecise (“fuzzy”’) words from natural language
that Lotfi Zadeh invented fuzzy techniques. So, a natural idea is to use fuzzy tech-
niques to formalize the notion of practical feasibility.

Let us apply fuzzy techniques. To use fuzzy techniques, let us first re-formulate the
above description of practical feasibility in more precise terms. Practical feasibility
means that for all possible length n, if n is reasonable, then 7(n) should be reasonable
too. If we denote “n is reasonable” by r(n), then the definition of practical feasibility
takes the following form Vn (r(n) — r(t(n))), or, equivalently,

(r(1) = r(t(1)) &(r(2) = r(t(2)) & . .. (1)

In fuzzy logic, our degree of confidence in each statement S is described by a number
from the interval [0, 1]:

o the value 1 means that we are absolutely confident that the statement S is true;

e the value 0 means that we are absolutely confident that the statement S is false;
and

e values between 0 and 1 indicate intermediate situations, when we are confident
only to some extent.

For each imprecise property like r(n), we can describe, for each n, the degree R(n)
that this property is true (i.e., in our case, that n is reasonable). The mapping that
assigns this degree to each n is known as the membership function describing the
corresponding notion.

Clearly, if the value n is reasonable, then all smaller values are reasonable as well.
Thus, the degree R(n) should be non-strictly decreasing, from R(1) =1 to R(n) — 0
as n increases.

To come up with estimates of composite statements — obtained by using logical
connectives like “and” and “if ... then” from the elementary statements — we can use
fuzzy analogues of these connectives, i.e., appropriate extensions of the usual logi-



4 Olga Kosheleva and Vladik Kreinovich

cal connectives form the two-valued set {0, 1} = {false, true} to the whole interval
[0,1].

The simplest possible “and”-operation is min(a,b), the simplest possible “or”-
operation is max(a,b), and the simplest possible negation operation is 1 — a. Impli-
cation A — B is, in classical logic, equivalent to BV —A. Thus, if we know the truth
values a and b of (= degrees of confidence in) statement A and B, then the truth value
of the implication A — B can be estimated as max (b, 1 —a). Thus, the truth value of
the formula (2) — i.e., the degree D(¢) to which an algorithm with worst-case time
complexity ¢(n) is practically feasible — takes the following form:

D(t) = min(max(R(z(1)),1 —R(1)),max(R(¢(2)),1 —R(2)),...) =
mninmax(R(t(n)),l —R(n)). (2)

If we use a general “and”-operation fg(a,b) and a general implication operation
f&(a,b), we get the following formula:

D(1) = fe(f~(R(1),R(¢(1))), f (R(2),R(1(2))),-.) (3)
This is our precise definition of practical feasibility.

The proposed new precise definition of practical feasibility is indeed more ad-
equate than the existing one. Let us show that already for the simplest possible
operations fg(a,b) = min(a,b) and f_,(a,b) = max(b,1 — a), the above definition
is more adequate that the existing formal definition.

Indeed, for example, according to the formal definition, any function with con-
stant time 7(n) =t = const is feasible. What will happen is we use our definition (2)
— or, to be precise, its simplest-case version (1)? When n increases, the value R(n)
decreases, thus the value 1 — R(n) increases and the value

max(R(t(n)),1 —R(n)) = max(R(t),1 — R(n))

also increases. So, the minimum D(¢) is attained when the size n is the smallest, i.e.,
whenn = 1:
D(t) = max(R(¢),1 —R(1)).

When the constant value ¢ is small, this degree is reasonable and the degree D(t)
that this computation time corresponds to a practically feasible algorithm is also
reasonable. However, as the constant ¢ increases, the value R(¢) tends to 0 and thus,
D(t) tends to a very small (practically 0) degree of confident 1 — R(1) that 1 is
not feasible — i.e., as desired, such an algorithm stops being feasible for large 7.
Actually, here D(¢) < R(t), so if the constant # is not reasonable, the corresponding
time complexity is not practically feasible.

Similarly, for a function like #(n) = exp(10~2° - n), the value R((n)) becomes
very small for large n — but for large n, R(n) is also close to 0 and thus, 1 — R(n)
is close to 1 and hence, the maximum max(R(¢(n)),1 — R(n)) > 1 — R(n) is also
close to 1. Thus, the fact that the value R(¢(n)) is small for such huge n does not



Which Algorithms Are Feasible and Which Are Not 5

affect the minimum D(¢), and the degree of confidence that this computation time is
practically feasible remains high.

How to actually compute the newly defined degree of feasibility: towards an
algorithm. OK, the definition is reasonable, but how can we actually compute the
corresponding degree (2)? Even in its simplest form (1), it is defined as the minimum
of infinitely many terms!

It turns out that to come up with the degree D(r), there is no need to actually
compute all these infinitely many terms. Indeed, we can use the fact that:

e the function R(n) is decreasing and tending to 0,
e thus 1 — R(n) is increasing and tending to 1,
e while R(#(n)) is decreasing and tending to 0.

So, for large n, we thus have R(7(n)) < 1—R(n).
If this inequality holds for some n, then for n > #/, due to the above-described
monotonicity, we have

R(t(n')) < R(t(n)) < 1—R(n) < 1-R(n)

thus R(#(n')) < 1—R(n’). So, if this inequality holds for some n, it holds for all
larger values n as well. Hence, there exists the smallest value ng for which this
inequality is true.

For all values n > ng, we have

max(R(t(n)),1 —R(n)) = 1 —R(n).

This term increases with n, thus the smallest possible value of this term is attained
when n is the smallest, i.e., when n = n. For this value n, we have

max(R(1(no)), 1 — R(no)) = 1 — R(no).
For values n < ng, we have R(¢(n)) > 1 — R(n) and thus,
max (R(t(n)), 1 — R(n)) = R(t(n).

This term decreases with 7, thus the smallest possible value of this term is attained
when n is the largest, i.e., when n = ng — 1. For this value n, we have

max(R(1(no —1)),1—=R(no— 1)) = R(t(no — 1)).
Thus, to find the smallest possible value of the maximum-expression
max(R(t(n)),1 = R(n)),

there is no need to consider all infinitely many values of this expression correspond-
ing to all possible natural numbers n: it is sufficient to consider only two values
of this expression, corresponding to n = ng and to n = ny — 1. So, we arrive at the
following algorithm.



6 Olga Kosheleva and Vladik Kreinovich

How to actually compute the newly defined degree of feasibility: algorithm.
Find the first value ng for which R(¢(n)) < 1 — R(n). This value can be found, e.g.,
by bisection (see, e.g., [2]). Then, for ny > 1, we have

D(1) = min(R(r(ng — 1)), 1 — R(ng)).

Comment. For ng = 1, we similarly get D(¢) = 1 —R(1).

Acknowledgments

This work was supported in part by the US National Science Foundation grants
1623190 (A Model of Change for Preparing a New Generation for Professional
Practice in Computer Science) and HRD-1242122 (Cyber-ShARE Center of Excel-
lence).

References

1. R. Belohlavek, J. W. Dauben, and G. J. Klir, Fuzzy Logic and Mathematics: A Historical Per-
spective, Oxford University Press, New York, 2017.

2. Th. H. Cormen, C. E. Leiserson, R. L. Rivest, and C. Stein, Introduction to Algorithms, MIT
Press, Cambridge, Massachusetts, 2009.

3. G. Klir and B. Yuan, Fuzzy Sets and Fuzzy Logic, Prentice Hall, Upper Saddle River, New
Jersey, 1995.

4. V. Kreinovich, A. Lakeyev, J. Rohn, and P. Kahl, Computational Complexity and Feasibility of
Data Processing and Interval Computations, Kluwer, Dordrecht, 1998.

5. J. M. Mendel, Uncertain Rule-Based Fuzzy Systems: Introduction and New Directions,
Springer, Cham, Switzerland, 2017.

6. H. T. Nguyen, C. L. Walker, and E. A. Walker, A First Course in Fuzzy Logic, Chapman and
Hall/CRC, Boca Raton, Florida, 2019.

7. V. Novak, 1. Perfilieva, and J. Mockot, Mathematical Principles of Fuzzy Logic, Kluwer,

Boston, Dordrecht, 1999.
. C. Papadimitriou, Computational Complexity, Addison-Wesley, Reading, Massachusetts, 1994.
9. L. A. Zadeh, “Fuzzy sets”, Information and Control, 1965, Vol. 8, pp. 338-353.

e}



	Which Algorithms Are Feasible and Which Are Not: Fuzzy Techniques Can Help in Formalizing the Notion of Feasibility
	Recommended Citation

	tmp.1587586203.pdf.lHsOK

