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Abstract

At first glance, there seems to be a contradiction between statistics
and fairness: statistics-based AI techniques lead to unfair discrimination
based on gender, race, and socio-economical status. This is not just a
fault of probability techniques: similar problems can happen if we use
fuzzy or other techniques for processing uncertainty. To attain fairness,
several authors proposed not to rely on statistics and instead, explicitly
add fairness constraints into decision making. In this paper, we show that
the seeming contradiction between statistics and fairness is caused mostly
by the fact that the existing systems use simplified models; contradictions
disappear if we replace them with more adequate (and thus more complex)
statistical models.

1 Formulation of the Problem

Social applications of AI. Recent AI techniques like deep learning have led to
many successful applications. For example, we can apply deep learning to decide
whose loan applications should be approved and whose applications should be
rejected – and if approved, what interest should we charge. We can apply deep
learning to decide which candidates for graduate program to accept – and for
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those accepted what financial benefits to offer as an enticement.
In all such cases, we feed the system with numerous past examples of suc-

cesses and failures. Based on these example, the systems tries its best to predict
whether a given loan or a given potential student will be a success or not. Sta-
tistically, these systems seem to work well: they predict success of failure better
than human decision makers. However, the results are often not satisfactory;
see, e.g., [1, 9]. Let us explain why.

Many current social applications of AI are unsatisfactory. On average,
loan applications from poorer geographic areas have a higher default rate. This
is a known fact, and statistical methods underlying machine learning find this
out. As a result, the system naturally recommends rejection of all loans from
these areas. This is not fair to people with good credit record who happen to
live in the not-so-good areas. Moveover, it is also detrimental to the bank since
the bank will miss on profiting from such potentially successful loans.

Similarly, it is known that in many disciplines women has a lower success
rates in getting their PhDs than man – and take longer when they succeed.
One of the main reasons for this is that raising children requires much more
efforts from women than from men. A statistical system, crudely speaking,
does not care about the reasons, it just takes this statistical fact into account
and preferably selects males. Not only this is not fair, this way the universities
miss a lot of talent – and nowadays, with not much need for routine boring
work, talent and creativity are extremely important, they should be nurtured,
not rejected.

So is there a contradiction between statistics and fairness? At first
glance, it may seem that there is a contradiction between statistical methods
and our ideas of fairness. In other words, it seems that if we want the systems
to be fair, we cannot rely on statistics only, we need to supplement statistics
with additional fairness constraints.

The need for such constraints is usually formulated – in our opinion, not
fully accurately – as the need for explainable AI; see, e.g., [6] and references
therein. The main idea behind explainable AI is that instead of relying on a
machine learning system as a black box, we extract some rules from this system
– and if these rules are not fair, we replace them with fairer rules.

What we show in this paper. In this paper, we show that the seeming
inconsistency comes from the fact that we use simplified statistical models.
We show that a more detailed description of the corresponding uncertainty
– be it interval, probabilistic, or fuzzy uncertainty – eliminates this seeming
contradiction, and enables the system to come up with fair decisions without
any need for additional constraints.
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2 How Current Techniques Lead to Unfair De-
cisions: Simplified Examples

Let us give some examples. In other to explain why the existing techniques
can lead to unfair solutions, let us give some detailed simplified examples. We
will start with statistical examples. Then, we will show that mathematically
similar examples – this time not related to fairness – can be found in applications
of fuzzy techniques as well – namely, when we apply the usual intelligent control
techniques.

A simplified statistical example. Let us consider a statistical version of a
classical AI example:

• birds normally fly,

• penguins are birds,

• penguins normally do not fly, and

• Sam is a penguin.

The question is: does Sam fly? To make it into a statistical example, let us add
some probabilities. Let us assume that 90% of the birds fly, and that 99% of the
penguins do not fly (of course, in reality, 100% of the penguins do not fly, but
let us keep it under 100% since in most real-life situations, we are never 100%
sure about anything).

From the viewpoint of common sense, the information about birds flying in
general is rather irrelevant for our situation – since we know that Sam is not
just any bird, it is a penguin, a very specific type of bird for which we know
the probability of flying. So, to find the probability of Sam flying, we should
only take into account information about penguins and thus, conclude that the
probability of Sam flying is 100− 99 = 1%.

However, this is not what we would get if we use the standard statistical
techniques. Indeed, from the purely statistical viewpoint, here we have two
rules that lead us to two different conclusion:

• since Sam is a bird, we can make a conclusion A that Sam flies, with
probability a = 90%; and

• since Sam is a penguin, we can make a conclusion B that Sam does not
fly, with probability b = 99%.

These two conclusions cannot be both right, since the probabilities of Sam flying
and not flying should add up to 1, and here we have 0.9 + 0.99 = 1.89 > 1. This
means that these conclusions are inconsistent.

From the purely logical viewpoint, if we have two statements A and B each
of which may be true or false, we can have four possible situations:

• both A and B are true, i.e., A&B;
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• A is true but B is false, i.e., A&¬B;

• A is false but B is true, i.e., ¬A&B; and

• both A and B are false, i.e., ¬A&¬B.

In general, the probabilities P (.) of all four situations can be obtained by
using the Maximum Entropy Principle – a natural extension of the Laplace
Indeterminacy Principle – according to which, if we do not know the depen-
dence between two random variables, then we should assume that they are
independent; see, e.g., [3]. For independent events, probabilities multiply, so
P (A&B) = P (A)·P (B) = a·b, P (A&¬B) = a·(1−b), P (¬A&B) = (1−a)·b,
and P (¬A&¬B) = (1− a) · (1− b).

In our case, the statements A and B are inconsistent, so we cannot have
A&B and we cannot have ¬A&¬B. The only two consistent options are
A&¬B and ¬A&B. Thus, the true probabilities P (A) and P (B) of A and B
can be found if we restrict ourselves to consistent situations:

P (A) = P (A | consistent) =
P (A& consistent)

P (consistent)
=

P (A&¬B)

P (A&¬B) + P (¬A&B)
=

a · (1− b)
a · (1− b) + (1− a) · b

and, of course, P (B) = 1− P (A).
In our example, with a = 0.9 and b = 0.99, we get

P (A) =
0.9 · 0.01

0.9 · 0.01 + 0.1 · 0.99
=

0.009

0.009 + 0.099
=

1

12
≈ 8%.

So, instead the desired 1%, we get a much larger 8% probability – clearly affected
by the general rule that birds normally fly.

This is a simplified example, but it explains why recommendation systems
based on usual statistical rules becomes biased: if a person with a perfect credit
history happens to live in a poor neighborhood, in which the overall loan success
rate is small, this person’s chances of getting a loan will be decreased. Similarly,
if a female student with perfect credentials applies for a graduate program, the
system would be treating her less favorably – since in general, in computer
science, female students succeed with lower frequency.

In both cases, we have clearly unfair situations – the system designers may
honestly give female students a better chance to succeed, but instead, their
inference system perpetrates the inequality.

A simplified fuzzy example. A fuzzy-related reader may view the above
example as one more example of why statistical methods are not always appli-
cable, an why alternative methods – such as fuzzy methods – are needed. Alas,
we will show that a very similar example is possible if we use the usual fuzzy
techniques.

This problem may not be well known for fuzzy recommendation systems –
since there are not too many of them actively used – but it is exactly the same
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problem that is well known in fuzzy control, the traditional application area of
fuzzy techniques; see, e.g., [2, 4, 5, 7, 8, 10].

Indeed, suppose that we have two rules that describe how the control u
should depend on the value x of the measured quantity:

• if x is small, then u is small; and

• if x = 0.2, then u = 0.3.

Suppose also that the notion “small” is described by a triangular membership
function µsmall(x) which is equal to max(1− |x|, 0).

From the common sense viewpoint, the first rule is more general, while the
second rule – which is actually in full agreement with the first one – describes
a specific knowledge that we have about control corresponding to the value
x = 0.2. Such situations can happen, e.g., when we combine the general expert
knowledge (the first rule) with the results of specific calculations (second rule).

In this case, if we actually have the value x = 0.2 for which we know the
exact control value u = 0.3, we should return this control value.

One of the usual ways of dealing with a system of fuzzy rules “if Ai(x) then
Bi(u)” (i = 1, . . . , n) is to take into account that a control u is reasonable for
given value x if:

• either the first rule is applicable, i.e., this rule’s condition A1(x) is satisfied
and thus, its conclusion B1(u) is also satisfied,

• or the second rule is applicable, i.e., this rule’s condition A2(x) is satisfied
and thus, its conclusion B2(u) is also satisfied, etc.

If we denote this property “u is reasonable for x” by R(x, u), and use the usual
notations & for “and” and ∨ for “or”, then the above text will become the
following formula:

R(x, u)↔ (A1(x) &B1(u)) ∨ (A2(x) &B2(u)) ∨ . . .

In line with the general fuzzy methodology, for situations in which we are not
100% sure about the properties Ai and Bj , we can apply the corresponding
fuzzy versions f&(a, b) and f∨(a, b) of usual “and” and “or” – known as “and”-
and “or”-operations (or, alternatively, t-norm and t-conorm) – to the degrees
µAi(x) and µBi(u) to which these properties are satisfied. Then, for the degree
µr(x, u) to which u is reasonable for x, we get the following formula:

µr(x, u) = f∨(f&(µA1
(x), µB1

(u)), f&(µA2
(x), µB2

(u)), . . .).

In particular, for the simplest possible “and”- and “or”-operations f&(a, b) =
min(a, b) and f∨(a, b) = max(a, b), we get

µr(x, u) = max(min(µA1(x), µB1(u)),min(µA2(x), µB2(u)), . . .).

Once we have this degree for each u, we can find the control u corresponding to x
by requiring that its mean square deviation from the actual value u – weighted
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by this degree – is the smallest possible. In precise terms, for a given x, we
minimize the expression

∫
µr(x, u) · (u− u)

2
. Differentiating this expression

with respect to u and equating the derivative to 0, we get the formula

u =

∫
µr(x, u) · u du∫
µr(x, u) du

known as centroid defuzzification.
Let us apply this technique to our two rules, for the case when x = 0.2 and

thus, µsmall(x) = 0.8. In the second rule, both the condition and the conclusion
are crisp:

• we have µA2
(0.2) = 1 and µA2

(x) = 0 for all other values x, and

• we have µB2
(0.3) = 1 and µB2

(u) = 0 for all other values u.

Thus, for all u 6= 0.2, we have µr(x, u) = min(µsmall(u), 0.8) and for u = 0.2, we
have µr(x, u) = 1.

According to the centroid formula, the resulting control is the above ratio of
two integrals. The single-point change in the function µr(x, u) does not affect
its integral, so the numerator is simply equal to the integral of the product
min(µsmall(u), 0.8) · u = min(max(1 − |u|), 0), 0.8) · u. This product is an odd
function of u: the first factor does not change if we replace u with −u, and the
second changes sign. Thus, its integral is 0, and so, the usual fuzzy methodology
leads to the control u = 0 – while from the viewpoint of common sense, we should
get 0.3.

3 Using More Detailed Models Helps

General description of the problem. In all previous example, we considered
the case of situations when we have two rules describing a given situation. For
example, in the case of loans:

• the first rule is that loans recipients from poor areas often default on a
loan, and

• the second rule is that people with a good credit record usually pay back
their loans.

From the common sense viewpoint, for a person with a good credit record living
in a poor area, we should go with the second rule, but the above-described naive
statistical approach – implemented in current machine learning systems – pays
an unnecessarily high attention to the first rule as well.

Similarly, for Sam the penguin:

• we have a general rule applicable to all the birds – that they usually fly;
and
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• we have a second specific rule, applicable only to penguins – that they do
not fly.

From the common sense viewpoint, since Sam in a penguin, we should go with
the second rule, but the naive statistical approach gives too much weight to the
first rule.

Idea. From the statistical viewpoint – or, more generally, from the viewpoint
of data processing – how can we distinguish between a more general rule and
a more specific rule? One important difference between a more general case is
that this case describes a larger sample, while a more specific case describes a
sub-sample of this sample, a sub-sample in which all the objects are, in some
reasonable sense, similar and thus, differ from each other less than in the general
sample. As a result, for many quantities characterizing the objects, the standard
deviation σ corresponding to the larger sample is much larger than for a smaller
sub-sample.

This is simple and reasonable, and – as we show – it helps put more weight
on a more general rule and thus, helps avoid the contradiction between statistics
and fairness.

How to combine two statistical rules with different means and stan-
dard deviations: reminder. To illustrate our point, let us consider the
simplest situation when we have two statistical rules – coming from two inde-
pendent sets of arguments or observation – that predict the value of a quantity
x, and we are absolutely confident in both of these rules. Since these are statis-
tical rules, they do not predict the exact value of the quantity, they only predict
the probabilities of different possible values of this quantity. These probabili-
ties can be described by the corresponding probability density functions ρ1(x)
and ρ2(x).

If these were rules predicting two different quantities x1 and x2, then, due
to the fact that these rules are assumed to be independent, the probability to
have values x1 and x2 should be equal to the product ρ1(x1) · ρ2(x2). However,
in our case, we know that these distributions describe the exact same quantity,
i.e., that we have the additional condition x1 = x2. Thus, instead of the above
2-D probability density, we need to consider the conditional probability density,
under the condition that x1 = x2. It is known that, in general, for A ⊆ B, the
conditional probability P (A |B) can be obtained from the probability P (A) by
diving it by the probability P (B) that the condition is satisfied – i.e., in effect,
by dividing the probability P (A) by a constant. Thus, in our case, the resulting
probability density is equal to ρ(x) = c · ρ1(x) · ρ2(x), where c is a constant that
can be determined from the condition that

∫
ρ(x) dx = 1, so that

ρ(x) =
ρ1(x) · ρ2(x)∫
ρ1(y) · ρ2(y) dy

.

In particular, if both probability distributions ρ1(x) and ρ2(x) are Gaussian,

i.e., have the form ρi(x) = const exp

(
− (x− ai)2

2σ2
i

)
for some means ai and
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standard deviations σi, then, as one can easily check, the resulting distribution
is also Gaussian, with mean a and standard deviation σ determined by the

formulas a =
a1 · σ−21 + a2 · σ−22

σ−21 + σ−22

and σ−2 = σ−21 + σ−22 .

How is this applicable to our examples. Let us consider the case of a loan.
Here, we have two pieces of information about a loan applicant:

• the first piece of information is that this person has a good credit history;

• the second piece of information is that this person lives in a poor area.

To combine these two pieces of information, let us estimate the corresponding
means and standard deviations.

Let us start with the estimates corresponding to people with good credit
history. In most cases, people with good credit history return their loans – and
return them on time. So, the mean value a1 of the returned percentage of the
loan x is close to 100, and the corresponding standard deviation is σ1 is close
to 0.

On the other hand, in general, for people living in a poor area, the returned
percentages vary:

• some people living in the poor area struggle, but return their loans,

• some fail and become unable to return their loans.

Here, the average a2 is clearly less that 100, and the standard deviation σ2 is
clearly much larger than σ1:

σ2 � σ1.

If we multiply both the numerator and the denominator of the above formula

for the combined value a by σ2
1 , we conclude that a =

a1 + a2 · (σ2
1/σ

2
2)

1 + σ2
1/σ

2
2

. Since

here σ1 � σ2, we get a ≈ a1. So, we conclude that the resulting estimate is
fully determined by the fact that the applicant has a good credit history – and
this estimate is practically not affected by the fact that the applicant happens
to live in a poor area. This is exactly what we wanted the system to conclude.

Similar arguments help resolve the bird-fly puzzle. As a measure of a flying
ability, we can take, e.g., the time that a bird can stay in the air.

• No penguin can really fly, so for penguins, this time is always small, and
the standard deviation of this time is close to 0: σ1 ≈ 0.

• On the other hand, if we consider the population of all the birds, then on
this general population, there is a large variance: some birds can barely
fly for a few minutes, while others can fly for days and cross the oceans.
For this piece of knowledge, the variance is huge and thus, the standard
deviation σ2 is also huge.

Here too, σ1 � σ2 and thus, our conclusion about Sam’s ability to fly will be
determined practically exclusively by the fact that Sam is a penguin – in full
agreement with common sense.
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4 How Is This Idea Applicable to Fuzzy

Usual relation between fuzzy and probability. As Lotfi Zadeh mentioned
several times, from the mathematical viewpoint, the main difference between
a probability density function ρ(x) and a membership function µ(x) is in their
normalization:

• for a probability density function, we have
∫
ρ(x) dx, while

• for a membership function, we have max
x

µ(x) = 1.

As a result:

• if we have a probability density function ρ(x), then we can normalize it
as membership function, by taking

µ(x) =
ρ(x)

max
y

ρ(y)
;

• if we have a membership function µ(x), then we can normalize it as a
probability density function, by taking

ρ(x) =
µ(x)∫
µ(y) dy

.

Let us use this relation to combine fuzzy knowledge. We know how
to combine probabilistic knowledge. So, if we have two membership functions
µ1(x) and µ2(x), we can combine the corresponding pieces of knowledge as
follows:

• first, we use the above relation to transform the given membership func-
tions into probability density functions ρi(x) = ci · µi(x), for some con-
stants ci;

• second, we use the procedure described in the previous section to combine
the probability density functions ρ1(x) and ρ2(x) into a single probability
density function ρ(x) = const · ρ1(x) · ρ2(x) – which, due to the above
relation between probability and fuzzy, takes the form ρ(x) = c3 · µ1(x) ·
µ2(x) for some constant c3;

• finally, we transform the resulting probability function ρ(x) back into a
membership function, thus getting µ(x) = c4 · ρ(x) for some constant c4,
i.e., µ(x) = c · µ1(x) · µ2(x) for an appropriate constant c.

This idea allows us to avoid the problem of traditional defuzzification.
Let us show that this combination rule enables us to avoid the above-described
problem of traditional defuzzification. Indeed, if we have two rules:
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• one rule corresponding to a very narrow membership function (i.e., in
probabilistic terms, very small σ), and

• another rule with a very wide membership function (i.e., with large σ),

then, as we have mentioned in the previous section, in the combined function,
the contribution of the wide rule will be largely ignored, and the conclusion will
be practically identical with what the narrow rule recommends – exactly as we
want.

What if we are only partly confident about some piece of knowledge?
The above combination formula describes how to combine two rules about which
we are fully confident. But what if we have some rules about which we are only
partly confident?

One way to interpret degree of confidence in a statement is:

• to have a poll of N experts and,

• if M out of N experts confirm this statement, to take the corresponding
proportion M/N as the desired degree of confidence.

Let us describe the membership function corresponding to the situation when
only one expert confirms the statement by µ1(x). In this case, according to the
above combination formula, the case when M experts confirm the statement is
described by a membership function proportional to µM1 (x). In particular, the
case of full confidence, when all N experts confirm the statement, is described by
the membership function µ(x) which is proportional to µN1 (x): µ(x) ∼ µN1 (x).
Thus, µ1(x) ∼ (µ(x))1/N and therefore, the membership function ∼ µM1 (x)
corresponding to degree of confidence d = M/N is proportional to (µ(x))M/N =
µd(x).

In general, if we have a rule like A(x) → B(u) relating the property A(x)
of the input (with membership function µA(x)) and the property B(u) of the
desired control u (with membership function µB(u)), then for each input x, our
degree of confidence in the conclusion B(u) is equal to d = µA(x). Thus, the
resulting membership function about u should be proportional to (µB(u))µA(x).
In we have several such rules A1(x) → B1(u), A2(x) → B2(u), etc., then the
resulting membership function should be proportional to the product of mem-
bership functions corresponding to individual rules, i.e., to the product

(µB1
(u))µA1

(x) · (µB2
(u))µA2

(x) · . . .
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