
University of Texas at El Paso University of Texas at El Paso 

ScholarWorks@UTEP ScholarWorks@UTEP 

Departmental Technical Reports (CS) Computer Science 

4-2020 

Why Linear Expressions in Discounting and in Empathy: A Why Linear Expressions in Discounting and in Empathy: A 

Symmetry-Based Explanation Symmetry-Based Explanation 

Supanika Leurcharusmee 
Chiang Mai University, supanika.l@cmu.ac.th 

Laxman Bokati 
The University of Texas at El Paso, lbokati@utep.edu 

Olga Kosheleva 
The University of Texas at El Paso, olgak@utep.edu 

Follow this and additional works at: https://scholarworks.utep.edu/cs_techrep 

 Part of the Computer Sciences Commons 

Comments: 

Technical Report: UTEP-CS-20-27 

Recommended Citation Recommended Citation 
Leurcharusmee, Supanika; Bokati, Laxman; and Kosheleva, Olga, "Why Linear Expressions in Discounting 
and in Empathy: A Symmetry-Based Explanation" (2020). Departmental Technical Reports (CS). 1415. 
https://scholarworks.utep.edu/cs_techrep/1415 

This Article is brought to you for free and open access by the Computer Science at ScholarWorks@UTEP. It has 
been accepted for inclusion in Departmental Technical Reports (CS) by an authorized administrator of 
ScholarWorks@UTEP. For more information, please contact lweber@utep.edu. 

https://scholarworks.utep.edu/
https://scholarworks.utep.edu/cs_techrep
https://scholarworks.utep.edu/computer
https://scholarworks.utep.edu/cs_techrep?utm_source=scholarworks.utep.edu%2Fcs_techrep%2F1415&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/142?utm_source=scholarworks.utep.edu%2Fcs_techrep%2F1415&utm_medium=PDF&utm_campaign=PDFCoverPages
https://scholarworks.utep.edu/cs_techrep/1415?utm_source=scholarworks.utep.edu%2Fcs_techrep%2F1415&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:lweber@utep.edu


Why Linear Expressions in Discounting and in

Empathy: A Symmetry-Based Explanation

Supanika Leurcharusmee1, Laxman Bokati2,
and Olga Kosheleva3

1Center of Excellence in Econometrics
Faculty of Economics

Chiang Mai University, Thailand
supanika.l@cmu.ac.th

2Computational Science Program
3Department of Teacher Education
University of Texas at El Paso

500 W. University
El Paso, Texas 79968, USA

lbokati@miners.utep.edu, olgak@utep.edu

Abstract

People’s preferences depend not only on the decision maker’s imme-
diate gain, they are also affected by the decision maker’s expectation of
future gains. A person’s decisions are also affected by possible conse-
quences for others. In decision theory, people’s preferences are described
by special quantities called utilities. In utility terms, the above phenom-
ena mean that the person’s overall utility of an action depends not only on
the utility corresponding to the action’s immediate consequences for this
person, it also depends on utilities corresponding to future consequences
and on utilities corresponding to consequences for others. These depen-
dencies reflect discounting of future consequences in comparison with the
current ones and to empathy (or lack of) of the person towards others.
In general, many formulas involving utility are nonlinear, even formulas
describing the dependence of utility on money. However, surprisingly, for
discounting and for empathy, linear formulas work very well. In this paper,
we show that natural symmetry requirements can explain this linearity.

1 Formulation of the Problem

Decision making: need for a general reminder. In this paper, we deal
with decision making issues, namely, with how future consequences and effect on
others affect human decision making. To formulate the corresponding problems,
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let us first recall how decision making is usually handled in decision theory. For
more details, see, e.g., [6, 15, 17, 20, 22] and references therein.

Utility: the main concept of decision theory. One of the main objectives
of decision theory is to help decision makers make decisions in complex situations
– help by using computer-based decision support systems. For these systems to
be able to help, we need to describe decision makers’ preferences in computer-
understandable form.

The natural language of computers is the language of numbers: processing
numbers is what computers were originally designed for, processing numbers
is what they can do with astronomical speed of several billion operations per
second. Thus, we need to be able to describe human preferences in numerical
form. This is done by using a special concept of utility.

To define utility, we need to select two extreme situations:

• a very bad situation A− which is worse than anything that we will actually
encounter, and

• a very good situation A+ which is better than anything that we will ac-
tually encounter.

Then, for each number p from the interval [0, 1], we can form a lottery – we will
denote it by L(p) – in which we get A+ with probability p and A− with the
remaining probability 1− p.

For p = 0, this lottery coincides with the very bad alternative A− and is,
thus, worse than any actual alternative A; we will denote this relation between
A− and A by A− < A. For p = 1, this lottery coincides with the very good
alternative A+ and is, thus, better than any actual alternative A: A < A+.
Clearly, the larger the probability p of the very good alternative, the better the
lottery. Thus, we get a continuous scale that leads from the very bad alternative
to the very good alternative.

For every actual alternative A, for small p, we have L(p) ≈ A− and thus,
L(p) < A. For p ≈ 1, we have L(p) ≈ A+ and thus, A < L(p). So, there must
exist a threshold that separates values p with L(p) < A from values for which
A < L(p). This threshold is equal to

sup{p : L(p) < A} = inf{p : A < L(p)}.

It is known as the utility u(A) of the alternative A.
For this threshold u(A), for every ε > 0, we have L(u(A) − ε) < A <

L(u(A) + ε). For very small ε, probabilities u(A) − ε, u(A), and u(A) + ε are
practically indistinguishable. So, from the practical viewpoint, the alternative
A is equivalent to the lottery L(u(A)). We will denote this equivalence by

A ≡ L(u(A)).

An important fact: utility is defined modulo a linear transformation.
In the above procedure, to find a numerical value u(A) for each alternative A,
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we need to select a pair (A−, A+) of extreme alternatives. What if we select a
different pair (A′−, A

′
+), e.g. a pair for which A− < A′− < A′+ < A+? How

will the original utility u(A) be related to the utility u′(A) defined in terms of
a new pair?

To answer this question, let us consider an alternative A with some utility
value u′(A). This utility value means that the alternative A is equivalent to a
lottery L′(u′(A)) in which we get A′+ with probability u′(A) and A′− with the
remaining probability 1 − u′(A). On the other hand, since both new extreme
situations A′− and A′+ are better than A− and worse than A+, each of them
is also equivalent to an appropriate lottery L(u(A′−)) (or L(u(A′+))) in which
we get A+ with the probability u(A′+) (or u(A′−)), and A− with the remaining
probability. Thus, the original alternative A is equivalent to a two-stage lottery,
in which:

• first, we select A′+ with probability u′(A) or A′− with probability 1−u′(A);

• then, if we selected A′+ on the first stage, we select A+ with probability
u(A′+) and A− with probability 1− u(A′+);

• and if we selected A′− on the first stage, we select A+ with probability
u(A′−) and A− with probability 1− u(A′−).

As a result of this two-stage lottery, we get either A+ or A−, and the probability
of getting A+ is equal to u′(A) · u(A′+) + (1 − u′(A)) · u(A′−). By definition of
utility, this probability is exactly the utility u(A) with respect to the original
pair (A−, A+) of extreme situations. Thus,

u(A) = u′(A) · u(A′+) + (1− u′(A)) · u(A′−) = u(A′−) + u(A) · (u(A′+)− u(A′−)),

i.e., u(A) = a ·u′(A)+b, where we denoted a
def
= u(A′+)−u(A′−) and b

def
= u(A′−).

So, utility is indeed defined modulo a linear transformation. This is the fact
that we will actively use in this paper.

Need for discounting. A person’s attitude to an alternative depends not only
on the immediate gain, it is also affected by future consequences of an action.

Let us describe this dependence in precise terms. Suppose that we know
the exact consequences of an action, both immediate and future consequences
– this happens, e.g., when we take a fixed-interest loan. Let u0 denote the
utility corresponding to the immediate consequences of an action, and let ut,
for t = 1, 2, . . ., demote the utility of consequences t years from now. Based on
this information, we need to describe the overall person’s attitude to this action.

In general, the attitude is described by utility values. So, what we need is a
method u(u0, u1, . . .) that would describe the overall utility of an action based
on the values u0, u1, . . . . Such a method is known as discounting, since the
future consequences affect the decision maker less than the current ones.

Empirical fact: all known discounting formulas are linear. There exist
several different discounting formula that provide a reasonably good description
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of how people actually make decisions; see, e.g., [5, 7, 11, 12, 13, 18, 19, 21, 26].
Interestingly, all these formulas are linear, i.e., have the form

u(u0, u1, . . . , un) = c + p0 · u0 + p1 · u1 + . . . + pn · un,

for some coefficients c and pi.

First question. This empirical linearity is strange, since, in general, many
formulas involving utility are non-linear: e.g., even the dependence of utility
on money is non-linear; see, e.g., [10, 16] and references therein. So, a natural
question is: why is empirical discounting linear?

Need to take empathy into account. Another important factor that affects
people’s decision making is the need to take into account how other people feel.
For example, it is difficult to enjoy good food in a restaurant if poor hungry
people sit outside begging for food. Since preferences are described in terms of
utility, this means that the utility of a person depends on the utilities of other
people.

In other words, the overall utility u of an action should depend not only on
the utility u0 of the decision maker, it should also depend on the utilities u1,
u2, . . . , of other people affected by this decision: u = u(u0, u1, . . . , un).

The idea that a utility of a person should depend on utilities of others was
first explicitly formalized in [23, 24]; it was further developed by Nobelist Gary
Becker; see, e.g., [1]; see also [2, 4, 3, 8, 9, 14, 20, 25].

Empirical fact: all known empathy-related formulas are linear. There
exist several different formulas that provide a reasonably good description of how
people’s utility depend on feeling (i.e., utilities) of others – see above references.
Interestingly, all these formulas are also linear, i.e., also have the same linear

form u(u0, u1, . . . , un) = c +
n∑

i=0

pi · ui.

Second question and what we do in this paper. This empirical fact raises
a natural second question: why is empathy well described by a linear formula?

In this paper, we provide a possible explanation of why in both cases – of
discounting and of empathy – we observe linear dependencies.

2 Towards an Explanation

What we want: a reminder. In both discounting and empathy cases, we need
to describe a utility u(u0, u1, . . . , un) that corresponds to a situation described
by several utility values:

• In the case of discounting, we want to describe how the overall person’s
utility depends on the utility value u0 coming from current gains and on
the values ut (1 ≤ t ≤ n) describing the person’s expected utility t years
into the future.
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• In the case of empathy, we want to describe how the overall person’s utility
depends on the utility value u0 coming from this person’s gains and the
utilities u1, . . . , un of other people.

To describe which dependencies are reasonable, let us analyze what are the
reasonable requirements on the corresponding function, and then let us look for
the dependencies that satisfy all these requirements.

First natural requirement: smoothness. When changes in u0, u1, . . . , un

are so small that they are barely noticeable (or even not noticeable at all), we
expect that the overall utility will also undergo a barely noticeable change.
This idea is formalized in mathematics into the notion of smoothness (dif-
ferentiability). Thus, in precise mathematical terms, we expect the function
u(u0, u1, . . . , un) to be smooth (differentiable).

Second natural requirement: invariance. We want to combine the degrees
of satisfaction, but what we actually combine are utility values. We have already
mentioned that the same degree of satisfaction can be described by different
numerical utility values – because these numerical values depend on the selection
of the alternatives A− and A+ that are used in defining utility.

If we replace the original pair (A−, A+) with a different pair (A′−, A
′
+), then,

as we have shown earlier, all the numerical values will change according to
an appropriate linear transformation u → u′ = a · u + b with a > 0. The
coefficients of this transformation depend on the utilities of the alternatives A±
and A′± with respect to each other. These utilities – and thus, the corresponding
coefficients a and b – may change with time and may change from one person
to another. As a result, each utility ui is, in general, transformed differently,
as ui → u′i = ai · ui + bi with coefficients ai > 0 and bi which are, in general,
different for each i.

It seems reasonable to require that the overall degree of satisfaction should
not change if we simply re-scale the corresponding utility values. In other words,
it seems reasonable to require that it we linearly re-scale each utility value ui,
then the resulting utility u(u0, u1, . . . , un) should also be linearly re-scaled.

Unfortunately, this idea does not work. From the common sense view-
point, invariance may sound reasonable, but, as well show, it does not work.

Definition 1. We say that a differentiable function u(u0, u1, . . . , un) is fully
invariant if for every tuple of values (a0, b0, a1, b1, . . . , an, bn) with ai > 0, there
exist values a > 0 and b for which, for all possible values of u0, u1, . . . , un, we
have

u(a0 · u0 + b0, a1 · u1 + b1, . . . , an · un + bn) = a · u(u0, u1, . . . , un) + b.

Proposition 1. A function u(u0, u1, . . . , un) is fully invariant if and only it is
a linear function of only one of the variables u0, u1, . . . , un.

5



Proof.

1◦. Full invariance means, in particular, that:

• for each b0, we have the values a(b0) and b(b0) for which, for all
u0, u1, . . . , un, we have

u(u0 + b0, u1, . . . , un) = a(b0) · u(u1, u1, . . . , un) + b(b0); (1)

and

• for each a0, we have the values a′(a0) and b′(a0) for which, for all
u0, u1, . . . , un, we have

u(a0 · u0, u1, . . . , un) = a′(a0) · u(u1, u1, . . . , un) + b′(a0). (2)

Let us fix all the values u1, . . . , un and consider the dependence on u0 only. In

other words, let us consider a function F (u0)
def
= u(u0, u1, . . . , un) of only one

variable.
In terms of this function, the formulas (1) and (2) take the form

F (u0 + b0) = a(b0) · F (u0) + b(b0); (1a)

F (a0 · u0) = a′(a0) · F (u0) + b′(a0). (2a)

We will show that these two equalities imply that F (u0) is a linear function.

2◦. Let us start with the equality (1a). Let us fix two different values u0 = u′0
and u0 = u′′0 of u0, for which F (u′0) 6= F (u′′0). Then, we get the following two
linear equations with constant coefficients for two unknowns a(b0) and b(b0):

F (u′0 + b0) = a(b0) · F (u′0) + b(b0);

F (u′′0 + b0) = a(b0) · F (u′′0) + b(b0).

The solutions to this equation are linear combinations of the expressions

F (u′0 + b0) and F (u′′0 + b0).

Since the original function u(u0, u1, . . . , un) is differentiable, the function
F (u0) is also differentiable and thus, both functions a(b0) and b(b0) are differ-
entiable – as linear combinations of differentiable functions.

3◦. Now that we know that all three functions F (u0), a(b0), and b(b0) involved
in formula (1) are differentiable, we can differentiate both sides of this formula
by b0, and get DF (u0 + b0) = Da(b0) · F (u0) + Db(b0), where Df denotes the
derivative of a function f . In particular, for b0 = 0, we get following new formula:

DF (u0) = A · F (u0) + B, where we denoted A
def
= Da(0) and B

def
= Db(0). In

other words, we get
dF

du0
= A · F + B. (3)
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We can separate variables in this equation if we multiply both sides by du0 and
divide both sides by A · F + B:

dF

A · F + B
= du0. (4)

Here, we have two possible cases: A = 0 and A 6= 0. Let us consider them one
by one.

4◦. If A = 0, then (4) takes the form
dF

B
= du0. Integrating both sides, we get

F

B
= u0+C, where C is the integration constant and thus, F (u0) = B ·u0+B ·C.

So, in this case, the function F (u0) is indeed linear.

5◦. If A 6= 0, then for G
def
= A · F + B, we get dG = A · dF , thus, dF =

dG

A
,

and the formula (4) takes the from
1

A
· dG
G

= du0. Integrating both sides, we

get
1

A
· ln(G) = u0 + C, so ln(G(u0)) = A · u0 + A · C. By applying exp(x) to

both sides, we get G(u0) = exp(A · u0 + A · C), hence

F (u0) =
G(u0)−B

A
=

exp(A · u0 + A · C)−B

A
. (5)

6◦. Let us now utilize the formula (2a). If we plug in the expression (5) into the
formula (2), we will see that the left-hand side is proportional to exp(a0 ·A ·u0),
while the right-hand side is proportional to exp(A·u0). For a0 > 1, the left-hand
side grows faster than the right-hand side, so they cannot be equal.

Thus, the case A 6= 0 is impossible, so A = 0, and by Part 4 of this proof,
F (u0) is a linear function.

7◦. For a linear function F (u0) = p0 · u0 + q0, as one can easily see, we have
F (u0 + b0) = F (u0) + p0 · b0. So, in the formula (1a), we have a(b0) = 1 and
b(b0) = p0 · b0. Thus, the formula (1) takes the form

u(u0 + b0, u1, . . . , un) = u(u0, u1, . . . , un) + p0 · b0. (6)

In particular, for u0 = 0, we have

u(b0, u1, u2, . . . , un) = u(0, u1, u2 . . . , un) + p0 · b0,

i.e., renaming b0 into u0:

u(u0, u1, u2, . . . , un) = u(0, u1, u2 . . . , un) + p0 · u0.

Similarly, we can prove that

u(0, u1, u2, . . . , un) = u(0, 0, u2 . . . , un) + p0 · u1,
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and thus

u(u0, u1, u2, . . . , un) = u(0, 0, u2, . . . , un) + p0 · u0 + p1 · u1

for some p1. Performing the same procedure with u2, etc., we can conclude that

u(u0, u1, . . . , un) = c + p1 · u0 + p1 · u1 + . . . + pn · un

for some pi, where we denoted c
def
= u(0, 0, . . . , 0).

8◦. Let us show, by contradiction, that this expression depends on one input,
i.e., that pi 6= 0 only for one index i.

If this expression depended on two or more inputs, this would mean that
at least two of the coefficients pi are different from 0. Let us denote the cor-
responding indices by i and j. Then, once we take uk = 0 for all other k,

then for F (ui, uj)
def
= u(0, . . . , 0, ui, 0, . . . , 0, uj , 0, . . . , 0), we get F (ui, uj) =

c + pi · ui + pj · uj for some pi 6= 0 and pj 6= 0.
In this case, for u′i = pj , u

′
j = u′′i = 0, and u′′j = pi, we have F (u′i, u

′
j) =

F (u′′i , u
′′
j ) = c+pi·pj . Due to full invariance, we have F (2ui, uj) = a·F (ui, uj)+b

for some constants a and b. Thus, we should have

F (2u′i, u
′
j) = a · F (u′i, u

′
j) + b = a · F (u′′i , u

′′
j ) + b = F (2u′′i , u

′′
j )

and therefore, F (2u′i, u
′
j) = F (2u′′i , u

′′
j ), but here

F (2u′i, u
′
j) = c + 2pi · pj 6= F (2u′′i , u

′′
j ) = c + pi · pj .

This contradiction completes the proof of the proposition.

Discussion. In both cases – of discounting and of empathy – the utility should
depend on the value u0. So, if we require full invariance, then the overall utility
cannot depend on anything else. In the discounting case, this would mean that
we do not take future gains into account at all – only the current ones. In the
empathy case, this means that we completely ignore happiness or suffering of
others and concentrate exclusive on our own happiness. Such behaviors happen,
but they are on the edge of pathology, this is not a normal behavior.

To describe normal behavior, we thus need to ease some of the symmetry
restrictions. Let us see what is the most natural way to do it.

Analysis of the problem. In our first attempt, we use invariance under all
possible linear transformation, i.e., under shift u→ u+b, under scaling u→ a·u
and thus, under any combination of these two transformations.

Invariance under shift makes perfect sense. Indeed, we can take, as point 0
(corresponding to the utility A−) either the status quo point or what happened
several years ago, when the situation was worse – the resulting decision should
not change. This is similar to how we measure the person’s income:

• we can measure it directly in dollars,
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• we can add the amount of indirect subsidies provided by the state to
everyone (e.g., in the form of state support for low food prices and/or low
public transportation prices), and thus, get a larger amount,

• or, alternatively, we can subtract the living minimum from all the salaries
and consider only what is left for extra things.

On the other hand, invariance with respect to scaling is less convincing.
True, if we want a decision procedure that does not depend on the choice of
monetary units, then we should treat, e.g., the difference between 100 dollars
and 200 dollars the same way as the difference between 100 million and 200
million. However, in practice, there is a big difference:

• for a person dealing with such sums as 100 and 200 dollars, there is a huge
difference between these two amounts, while

• for a billionaire dealing with hundreds of millions all the time, an extra
hundred million is probably an icing on a cake, something that he/she is
often willing to donate to charity.

With this is mind, let us see what will happen if instead of full invariance, we
only require invariance with respect to shifts.

Definition 2. We say that a differentiable function u(u0, u1, . . . , un) is shift-
invariant if for every tuple of values (b0, b1, . . . , bn), there exist a value b for
which, for all possible values of u0, u1, . . . , un, we have

u(u0 + b0, u1 + b1, . . . , un + bn) = u(u0, u1, . . . , un) + b.

Proposition 2. A function u(u0, u1, . . . , un) is shift-invariant if and only it is
linear.

Discussion. Thus, we indeed have a symmetry-based explanation of why both
in discounting and in empathy, linear functions provide a good description of
people’s decision making.

Proof. The proof of this proposition is similar to the proof of Proposition 1.

1◦. For the case when b1 = . . . = bn = 0, shift-invariance means that

u(u0 + b0, u1, . . . , un) = u(u0, u1, . . . , un) + b(b0). (7)

So, if we fix the values u1, . . . , un, and consider a function F (u0)
def
=

u(u0, u1, . . . , un), then for this function, the formula (7) takes the form

F (u0 + b0) = F (u0) + b(b0). (7a)
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2◦. Since the function F (u0) is differentiable, the function b(b0) is also differ-
entiable – as the difference F (u0 + b0) − F (u0) of two differentiable functions.
Thus, we can differentiate both sides of the formula (7a) with respect to b0 and
get the expression DF (u0 + b0) = Db(b0). In particular, for b0 = 0, we get

DF (u0) = p0, where we denoted p0
def
= Db(0), i.e.,

dF

du0
= p0. Integrating both

sides, we conclude that F (u0) = p0 · u0 + C. Thus,

b(b0) = F (u0 + b0)− F (u0) = (p0 · (u0 + b0) + C)− (p0 · u0 + C) = p0 · b0.

3◦. Substituting the above formula for b(b0) into the expression (7), we conclude
that

u(u0 + b0, u1, . . . , un) = u(u0, u1, . . . , un) + p0 · b0.

In particular, for u0 = 0, we conclude that

u(b0, u1, . . . , un) = u(0, u1, . . . , un) + p0 · b0,

i.e., renaming b0 to u0:

u(u0, u1, . . . , un) = u(0, u1, . . . , un) + p0 · u0.

Similar to the proof of Proposition 1, we can similarly conclude that

u(0, u1, u2, . . . , un) = u(0, 0, u2, . . . , un) + p1 · u1

for some value p1 and thus, that

u(u0, u1, u2, . . . , un) = u(0, 0, u2, . . . , un) + p0 · u0 + p1 · u1,

and, in general, that

u(u1, . . . , un) = c + p0 · u1 + . . . + pn · un,

where we denoted c
def
= u(0, 0, . . . , 0).

The proposition is proven.
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