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Abstract

Most current high-quality electronic audio systems use class-D au-
dio amplifiers (D-amps, for short), in which a signal is represented by
a sequence of pulses of fixed height, pulses whose duration at any given
moment of time linearly depends on the amplitude of the input signal
at this moment of time. In this paper, we explain the efficiency of this
signal representation by showing that this representation is the least vul-
nerable to additive noise (that affect measuring the signal itself) and to
measurement errors corresponding to measuring time.

1 Formulation of the Problem

Most current electronic audio systems use class-D audio amplifiers, where a
signal x(t) is represented by a sequence s(t) of pulses whose height is fixed and
whose duration at time ¢ linearly depends on the amplitude z(¢) of the input
signal at this moment of time; see, e.g., [1] and references therein. Starting with
the first commercial applications in 2001, D-amps have used in many successful
devices.

However, why they are so efficient is not clear. In this paper, we provide a
possible theoretical explanation for this efficiency.

We will do it in two sections. In the first of these sections, we explain why
using pulses makes sense. In the following section, we explain why the pulse’s
duration should linearly depend on the amplitude of the input signal x(t).

2 Why Pulses

Let us start with some preliminaries.



There are bounds on possible values of the signal. For each device, there
are bounds s and s on the amplitude of a signal that can be represented by this
device. In other words, for each signal s(t) represented by this device and for
each moment of time ¢, we have s < s(t) <.

Noise is mostly additive. In every audio system, there is noise n(t). Most
noises are additive: they add to the signal. For example, if we want to listen to
a musical performance, then someone talking or coughing or shuffling in a chair
produce a noise signal that adds to the original signal.

Similarly, if we have a weak signal s(¢) which is being processed by an elec-
tronic system, then additional signals from other electric and electronic de-
vices act as an additive noise n(t), so the actual amplitude is equal to the sum
s(t) + n(t).

What do we know about the noise. In some cases — e.g., in a predictable
industrial environment — we know what devices produce the noise, so we can
predict some statistical characteristics of this noise.

However, in many other situations — e.g., in TV sets — noises are rather
unpredictable. All we may know is the upper bound n on possible values of the
noise n(t): |n(t)] < n.

We want to be the least vulnerable to noise. To improve the quality of
the resulting signal, it is desirable to select a signal’s representation in which
this signal would be the least vulnerable to noise.

Additive noise n(t) changes the original value s(¢) of the signal to the modi-
fied value s(t)+n(t). Ideally, we want to make sure that, based on this modified
signal, we will be able to uniquely reconstruct the original signal s(t).

For this to happen, not all signal values are possible. Let us show that
for this desired feature to happen, we must select a representation s(¢) in which
not all signal values are possible.

Indeed, if we have two possible values sy < s, whose difference does not

. . S — S . . . .
exceed 2n, i.e., for which % < n, then we have a situation in which:

So— 8
e to the first value s;, we add noise n; = 2 5 L for which [n1| < n, thus
s1+s
getting the value s; +n; = ! ;— 2; and

Sg— S
e to the second value s5, we add noise no = f% for which also |ns| < n,
. S1+ s
thus also getting the same value sy + ny = ! 5 2.
. s1+ 82 .
Thus, based on the modified value s; +n; = , we cannot uniquely deter-

mine the original value of the signal: it could be s1 or it could be ss.

Resulting explanation of using pulses. The larger the noise level n against
which we are safe, the larger must be the difference between possible values of



the signal. Thus, to makes sure that the signal representation is safe against
the strongest possible noise, we must have the differences as large as possible.

On the interval [s,3], the largest possible difference between the possible
values is when one of these values is s and another value is 5. Thus, we end
up with a representation in which at each moment of time, the signal is equal
either to s or to s.

This signal can be equivalently represented as a constant level s and a se-
quence of pulses of the same height (amplitude) s — s.

3 Why the Pulse’s Duration Should Linearly
Depend on the Amplitude of the Input Sig-
nal

Pulse representation: reminder. As we concluded in the previous section,
to make the representation as noise-resistant as possible, we need represent the
time-dependent input signal z(¢) by a sequence of pulses.

How can we encode the amplitude of the input signal. Since the height
(amplitude) of each pulse is the same, the only way that we can represent
information about the input signal’s amplitude x(t) at a given moment of time
t is to make the pulse’s width (duration) w — and the time interval between
the pulses — dependent on x(t). Thus, we should select w depending on the
amplitude w = w(x).

‘Which dependence w = w(x) should we select: analysis of the problem.
Which dependence of the width w on the initial amplitude should we select?

Since the amplitude z of the input is encoded by the pulse’s width w(z), the
only way to reconstruct the original signal x is to measure the width w, and
then find z for which w(z) = w.

We want this reconstruction to be as accurate as possible. Let € > 0 be the
accuracy with which we can measure the pulse’s duration w. A change Az in
the input signal — after which the signal becomes equal to = + Ax — leads to
the changed width w(z + Ax). For small Az, we can expand the expression
w(xz + Az) in Taylor series and keep only linear terms in this expansion:

w(z + Az) = w(z) + Aw,

where we denoted Aw % w’ (z)-Az. Differences in width which are smaller than
€ will not be detected. So the smallest difference in Az that will be detected

comes from the formula |[Aw| = |w'(x) - Ax| = ¢, i.e., is equal to |Az| = @)
w'(z

In general, the guaranteed accuracy with which we can determine the signal
is thus equal to the largest of these values, i.e., to the value

0 = max ° = — c .
@ |w'(z)]  minfw(z)]
xr




We want this value to be the smallest, so we want the denominator min |w’(z)|
x

to attain the largest possible value.
The limitation is that the overall widths of all the pulses corresponding to
times
O=t1,ta=t1+At,... .t =T

should fit within time T, i.e., we should have

> w(x(t;) <T.

i=1

This inequality must be satisfied for all possible input signals. In real life,
everything is bounded, so at each moment of time, possible values z(t) of the
input signal must be between some bounds z and T: z < z(t) < T.

We want to be able to uniquely reconstruct = from w(z). Thus, the function
w(z) should be monotonic - either increasing or decreasing,.

If the function w(x) is increasing, then we have w(z(t)) < w(T) for all ¢.
Thus, to make sure that the above inequality is satisfied for all possible input
signals, it is sufficient to require that this inequality is satisfied when z(t) = =

T
for all ¢, i.e., that n - w(Z) - T, or, equivalently, that w(Z) < At = —.
n

If the function w(z) is decreasing, then similarly, we conclude that the re-
quirement that the above inequality is satisfied for all possible input signals is
equivalent to requiring that w(z) < At.

Thus, to find the best dependence w(z), we must solve the following opti-
mization problem:

Which dependence w = w(x) should we select: precise formulation of
the problem. To find the encoding w(x) that leads to the most accurate recon-
struction of the input signal z(t), we must solve the following two optimization
problems.

e Of all increasing functions w(z) > 0 defined for all z € [z, ] and for which
w(T) < At, we must select a function for which the minimum min |w’(z)|
x

attains the largest possible value.

o Of all decreasing functions w(z) > 0 defined for all x € [z, 7] and for which
w(z) < At, we must select a function for which the minimum min |w’(z)|

attains the largest possible value.

Solution to the above optimization problem. Let us first show how to

solve the problem for the case when the function w(z) is increasing. We will

show that in this case, the largest possible value of the minimum min |w’(z)| is
x

r—x

attained for the function w(x) = At - —
T—x



Indeed, in this case, the dependence w(z) on z is linear, so we have the same
value of w'(x) for all x — which is thus equal to the minimum:

At

T—T

min [u'(z)| = w'(z) =

Let us prove that the minimum cannot attain any larger value. Indeed, if

we could have
At

r—z

)

def .
m = min |w'(z)| >
xT
then we will have, for each x,

At

T—x

w'(z) >m >

Integrating both sides of this inequality by x from z to Z, and taking into
account that

[ s = u@) - wi

and

/ mdx =m- (T — x),

At
we conclude that w(Z)—w(z) > m-(T—z). Since m > ——, we have m-(Z—z) >

At hence

w(T) — w(z) > At.

On the other hand, from the fact that w(Z) < A and w(z) > 0, we conclude
that w(Z) — w(z) < At, which contradicts to the previous inequality. This
contradiction shows that the minimum cannot attain any value larger than

T—z
—— and thus, that the linear function w(x) = At - —— is indeed optimal.
T—zx T—2x

Similarly, in the decreasing case, we can prove that in this case, the linear

r—T . .
is optimal.
x

function w(x) = At - —
r—x

In both cases, we proved that the width of the pulse should linearly depend
on the input signal — i.e., that the encoding use in class-D audio amplifiers is

indeed optimal.
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