
University of Texas at El Paso University of Texas at El Paso 

ScholarWorks@UTEP ScholarWorks@UTEP 

Departmental Technical Reports (CS) Computer Science 

4-2020 

Why Black-Scholes Equations Are Effective Beyond Their Usual Why Black-Scholes Equations Are Effective Beyond Their Usual 

Assumptions: Symmetry-Based Explanation Assumptions: Symmetry-Based Explanation 

Warattaya Chinnakum 
Chiang Mai University, Warattaya_chin@hotmail.co.th 

Sean R. Aguilar 
The University of Texas at El Paso, sraguilar4@miners.utep.edu 

Follow this and additional works at: https://scholarworks.utep.edu/cs_techrep 

 Part of the Computer Sciences Commons 

Comments: 

Technical Report: UTEP-CS-20-25 

Recommended Citation Recommended Citation 
Chinnakum, Warattaya and Aguilar, Sean R., "Why Black-Scholes Equations Are Effective Beyond Their 
Usual Assumptions: Symmetry-Based Explanation" (2020). Departmental Technical Reports (CS). 1417. 
https://scholarworks.utep.edu/cs_techrep/1417 

This Article is brought to you for free and open access by the Computer Science at ScholarWorks@UTEP. It has 
been accepted for inclusion in Departmental Technical Reports (CS) by an authorized administrator of 
ScholarWorks@UTEP. For more information, please contact lweber@utep.edu. 

https://scholarworks.utep.edu/
https://scholarworks.utep.edu/cs_techrep
https://scholarworks.utep.edu/computer
https://scholarworks.utep.edu/cs_techrep?utm_source=scholarworks.utep.edu%2Fcs_techrep%2F1417&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/142?utm_source=scholarworks.utep.edu%2Fcs_techrep%2F1417&utm_medium=PDF&utm_campaign=PDFCoverPages
https://scholarworks.utep.edu/cs_techrep/1417?utm_source=scholarworks.utep.edu%2Fcs_techrep%2F1417&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:lweber@utep.edu


Why Black-Scholes Equations Are Effective

Beyond Their Usual Assumptions:

Symmetry-Based Explanation

Warattaya Chinnakum1 and Sean R. Aguilar2
1Center of Excellence in Econometrics

Faculty of Economics
Chiang Mai University

Chiang Mai, Thailand, Warattaya chin@hotmail.co.th
2Department of Computer Science
University of Texas at El Paso

500 W. University
El Paso, TX 79968, USA

sraguilar4@miners.utep.edu

Abstract

Nobel-Prize-winning Black-Scholes equations are actively used to es-
timate the price of options and other financial instruments. In practice,
they provide a good estimate for the price, but the problem is that their
original derivation is based on many simplifying statistical assumptions
which are, in general, not valid for financial time series. The fact that
these equations are effective way beyond their usual assumptions leads
to a natural conclusion that there must be an alternative derivation for
these equations, a derivation that does not use the usual too-strong as-
sumptions. In this paper, we provide such a derivation in which the only
substantial assumption is a natural symmetry: namely, scale-invariance
of the corresponding processes. Scale-invariance also allows us to describe
possible generalizations of Black-Scholes equations, generalizations that
we hope will lead to even more accurate estimates for the corresponding
prices.

1 Formulation of the Problem

Options as financial instruments: reminder. The whole purpose of finan-
cial investment is to grow the available amount of money. For this purpose,
investors buy stocks (and other financial instruments) that they believe will rise
in price.

However, such activity comes with risks:
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• if you invest all the money into the stock that is supposed to grow and it
does grow, you indeed gain a big profit;

• but on the other hand, if something happened (and the coronavirus epi-
demics is a good example of such an unpredictable event) and the stock
price goes down, you may lose a lot – or even everything you invested.

A less risky option is not to buy all the stocks right away, but to pay a smaller
amount of money for the right (but not the obligation) to buy this stock at a
certain price K (called the strike price) at a pre-determined future moment of
time. If only a few people believe that the price will rise, the current price of
the stock is taken as the strike price. If many people believe that the stock will
rise – but you are more confident in this rise than many others – the strike price
is set higher, according to people’s expectation of the future price of this stock.
This way:

• If the stock does rise as you expected, and its future price (called spot
price) S will be higher than K, then you can buy this stock at the strike
price, immediately sell it at the current stock price, and get a profit of
S −K (minus what you paid for this option) for each stock.

• On the other hand, if the stock price tanks, you do not lose all your money
– you simply do not exercise this option, and all you lose if what you paid
for this option.

Similar contracts can be bought if an investor has stocks that may go down,
but does not want to sell them right away. In this case, an investor can buy
an option of selling this stock at some fixed future moment of time at a pre-
determined (“strike”) price.

This may sound like modern financial alchemy, but this idea is actually
known since ancient Greece: the famous mathematician, astronomer, and
philosopher Thales of Miletus – known as one of the Seven Sages of Antiquity
– used this to invest money. In the 17 century, when stock exchanges started
appearing in Europe, options became one of the way to minimize the investor’s
risk. Options have been heavily advertised in Amsterdam in 1688, in London
in the 1690s, etc.

Such option contracts are actively used nowadays as well. Since such con-
tracts originated in Europe, they are usually called European options. These
option remain the main type of options that can be bought over the counter.

In the 20th century, many other types of options have been invented. The
most well known are American options, in which a buyer can exercise his/her
right to buy or sell not only at the predetermined future moment of time, but
also at any earlier moment of time. Such options can be bought and sold at
special futures exchanges.

Terminological comment. Options are a particular case of financial instruments
generally known as derivatives – because, in contract to stocks and bonds whose
value comes directly from the corresponding entity (company or municipality),
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the value of a derivative comes indirectly, from possible trade of stocks or bonds.

Estimating the value of an option. What is a reasonable price of an op-
tion? In the 17th century, when options became popular, their prices oscillated
widely – just like the stock prices oscillated a lot. There was not much informa-
tion about different companies, no mathematical tools to process the available
information. Such oscillations continued until the 1970s, when mathematical
equations for pricing the options first appeared in two papers – a paper [3] by
Fischer Black and Myron Scholes and a paper [14] by Robert Merton.

How these formulas were applied: from over-hype to over-criticism
to a realistic usage. The corresponding formulas were derived under several
simplifying assumptions, assumptions that are rather crude approximations to
the actual behavior of the stocks.

However, since no better formulas were known, investors started using these
approximate formulas to estimate the value of the options – and those investors
who used these formulas got, on average, more profit and less loss than those
old-fashioned investors who relied on their intuition. This success led many
investors to invest in options, and to trust these formulas too much.

But the formulas remain approximate. If you use an approximate formula
to decide which of the stocks to buy, it makes sense to trust the formula: if
one stock will rise much higher according to the formula, most probably it will
indeed rise higher.

However, if you rely on the formula to be exact you can lose a lot of money
– and this is exactly what happened to many investors. Indeed, if a formula
predicts that between two seemingly equally valued stocks, one will rise 0.5%
more than the other one, and if you trust these computations, you can invest
all your money hoping that the first stock will have a higher value – and lose
everything if it grows a little slower.

This bad experience led to an over-critical attitude to options (and to deriva-
tives in general), they were blamed for economic crises and bankruptcies and
shunned.

Eventually, as often happens with new ideas, the wild attitude oscillations
stopped, and people realized that these formulas are a useful tool, however,
they also realized that this tool’s predictions are approximate. The attitude to
the authors of these formulas similarly went from calling them supergeniuses
to calling them evil geniuses to calling them good scientists. Once all these
oscillations settled down, Myron Scholes and Robert Merton – the two remaining
authors of the original equations – received the 1997 Nobel Prize in Economics.

Black-Scholes equations: description, current status and the remain-
ing challenge. Let us first present the Black-Scholes equations in precise terms.
These equations describe how the price V of an option changes with time. To
be more precise, they describe the dependence V (t, S) of the option’s price at
moment t on t and on the initial price S of the stock. These equations have the
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following form:
∂V

∂t
= a · V + b · S · ∂V

∂S
+ c · S2 · ∂

2V

∂S2
, (1)

for some coefficient a, b, and c.
In the original Black-Scholes equation, a is equal to the risk-free interest

rate, b = −a, and c = −V/2, where V is the variance of difference between
stock prices at moments separated by one time unit. However, this formula can
be – and is – used in a more general context, where the parameters a, b, and c
have to be determined experimentally.

This formula works reasonably well in many situations. The main theoretical
challenge is that this formula works surprisingly too well. Namely, this formula
was derived under the simplifying condition that the change in the stock’s price
can be described by the Brownian motion, with finite-variance (e.g., Gaussian)
changes. It is know that the actual changes of stock prices with time are much
better described by heavy-tail distributions, in which variance can be infinite.
The Gaussian assumption was one of the main reason why previous econometric
models could not predict the 2008/09 crisis: under the Gaussian distribution,
deviations cannot exceed 6 standard deviations, but such deviations do occur
during the crises.

Similarly, the assumptions that the stock follows the Brownian motion – i.e.,
that there is no correlation between changes in stock prices in two consequent
moment of time – is also not true: in reality, a period of rising stock prices is
usually followed by yet another period of such rising, and vice versa.

Assumptions are not empirically valid, but the conclusions – the Black-
Scholes equations – are empirically valid. This means that there should be other
reasons why this equation is valid, there should be another derivation of these
equations that does not depend on the current empirically invalid assumptions.
This is what we do in this paper: we show how it is possible to derive the
Black-Scholes equations without invoking the empirically invalid assumptions.

Another challenge is – what next? As we have mentioned, the Black-Scholes
equations are an approximation, how can we come up with a more accurate
equation? Our derivation of the equations themselves enables us to propose
how such – hopefully more accurate – equations can be derived.

2 Symmetry-Based Derivation of Black-Scholes
Equations

General formulation of the problem. We want to describe how the price

of the option changes with time, i.e., how the rate of change
∂V

∂t
depends of

the current price V (t, S) of the option corresponding to the same original stock
price S and on the prices V (t, S′), V (t, S′′), . . . , corresponding to other initial
stock price values S′, S′′, . . . :

∂V

∂t
= f(V (t, S), V (t, S′), V (t, S′′), . . .). (2)
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First idea: using smoothness. In most applications, dependencies are
smooth, so we can expand each dependence in Taylor series in terms of the
unknowns and keep only few first terms in this expansion.

We will use this idea to make two simplifying assumptions.

First simplifying assumption: linearity with respect to V . For each
individual stock, the value S is relatively small, and the corresponding price
V for the option is also relatively small. Big millions only appear if we trade
thousands of stocks.

Since the value V is small, we can safely ignore terms which are quadratic
(or of higher order) in terms of V and keep only linear terms in the correspond-
ing expansion. Thus, the general formula (2) becomes a simplified – namely,
linearized – formula:

∂V

∂t
= a0(S)+a(S, S) ·V (t, S)+a(S, S′) ·V (t, S′)+a(S, S′′) ·V (t, S′′)+ . . . , (3)

for some coefficients a0(S), a(S, S′), a(S, S′′), . . . .
When at the present moments, all the prices are 0s, it is not very reasonable

to expect that the options will suddenly become valuable in the future – if they
were, their price now would not be 0. Thus, if V (t, S) = V (t, S′) = V (t, S′′) =

. . . = 0, we should have
∂V

∂t
= 0. If we substitute the values V (t, S) = V (t, S′) =

V (t, S′′) = . . . = 0 into the formula (3), then the requirement that
∂V

∂t
= 0 takes

the form a0(S) = 0. For a0(S) = 0, the formula (3) takes an even simpler form:

∂V

∂t
= a(S, S) · V (t, S) + a(S, S′) · V (t, S′) + a(S, S′′) · V (t, S′′) + . . . (4)

Second simplifying assumption: keeping only linear and quadratic
terms with respect to S. For the dependence of the option price V (t, S) on
the initial stock price S, we can similarly keep only the few first terms in the
Taylor expansion. Let us keep only linear and quadratic terms, then we get

V (t, S′) = V (t, S) + (S′ − S) · ∂V
∂S

+
1

2
· (S′ − S)2 · ∂

2V

∂S2
,

V (t, S′′) = V (t, S) + (S′′ − S) · ∂V
∂S

+
1

2
· (S′′ − S)2 · ∂

2V

∂S2
,

etc.
Thus, in terms of dependence on V (t, S), all the terms V (t, S′), V (t, S′′),

. . . , in the formula (4) are linear combinations of the value V (t, S) and of its first
two partial derivatives with respect to S. Substituting these linear combinations
into the formula (4), we arrive at the following formula:

∂V

∂t
= c0(S) · V + c1(S) · ∂V

∂S
+ c2(S) · ∂

2V

∂S2
, (5)
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for some coefficients ci(S) depending on S.
So, to fully determine this formula, it is sufficient to describe how the coef-

ficients ci(S) depend on S.

Why symmetries? We are uncertain about what dependencies ci(S) will work
best. What general technique can we use to deal with this uncertainty?

There are many techniques for dealing with uncertainty, but, in our opinion,
any attempts to predict future events come from the following general idea:
looks at similar situations in the past, and predict similar consequences. The
important word here is “similar”, it means, crudely speaking, that the situation
is not exactly the same as it was in the past, but it is similar – in the sense
that the situation can obtained from the previous ones by some changes (=
transformations) that preserve the main properties of the process.

For example, if we drop an object in several US locations and every time, the
object starts falling with the acceleration of 9.81 m/sec2, then when we drop the
same object in Asia, we expect to see the same result. Here, the corresponding
transformation is shift in space.

In general, transformations under which the main properties are preserved
are known as symmetries, and the preservation of the corresponding properties
is known as invariance. Symmetries and invariances are one of the main tools
in modern theoretical physics; see, e.g., [4, 19]. Symmetries can also explain
where the traditional physical equations come from (see, e.g., [8, 10]) and why
some techniques for processing physical data are empirically successful (see, e.g.,
[7, 12]).

However, symmetries are very efficient beyond physics too. For example,
in fuzzy logic (see, e.g., [1, 6, 13, 17, 18, 20]) and in neural networks, both
traditional and deep (see, e.g., [2, 5]), symmetries explain why some versions of
the corresponding techniques are empirically successful – and some are not; see,
e.g., [9, 11, 15, 16].

What are the symmetries in this case. In physics, many symmetries come
from the fact that there is often no fixed size. For example, in the old days
– before computer modeling became ubiquitous – aerodynamic properties of
the newly designed planes were first tested by testing a scaled-down version
of the plane in a wind tunnel. Another example is that after the first atomic
bomb was used, physicists around the world immediately determined its power
– which the US military classified and did not report in their announcements
– by comparing the effects of the corresponding explosion with the effects of
well-studied smaller-scale explosions.

In such situations, the choice of a measuring unit is arbitrary, the resulting
equations should not change if we simply replace, e.g., meters with centimeters,
or, more generally, replace the original measuring unit with a λ times smaller
one, for some λ > 0. After this change, all numerical values of the corresponding
quantity x are multiplied by λ: x→ x′ = λ · x. For example, 2 meters becomes
100 ·2 = 200 centimeters. In general, such a transformation is known as scaling,
and invariance with respect to this transformation is known as scale-invariance.
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Similarly, in finances, the selection of a monetary unit is an arbitrary process.
We can measure everything in US dollars, we can measure everything in Euros
or in Yen – the corresponding equations should not change.

Let us apply scale-invariance. Let us apply the scale-invariance requirement
to equation (5). When we change a monetary unit to a λ times smaller one,
then both the original stock price S and the option price V get multiplied by
λ, i.e.:

• instead of S, we get S′ = λ · S, and

• instead of V , we get V ′ = λ · V .

We want to require that the equation (5) be equivalent to the same equation,
but described in terms of the re-scaled values S′ and V ′:

∂V ′

∂S′
= c0(S′) · V ′ + c1(S′) · ∂V

′

∂S′
+ c2(S) · ∂

2V ′

(∂S′)2
. (6)

Substituting V ′ = λ · V into the formula (6) and taking into account that

∂(λ · V )

∂S′
= λ · ∂V

∂S′

and
∂2(λ · V )

(∂S′)2
= λ · ∂2V

(∂S′)2
,

we conclude that

λ · ∂V
∂t

= c0(S′) · λ · V + c1(S′) · λ · ∂V
∂S′

+ c2(S′) · λ · ∂2V

(∂S′)2
.

Dividing both sides of this formula by λ, we get:

∂V

∂S′
= c0(S′) · V + c1(S′) · ∂V

∂S′
+ c2(S′) · ∂2V

(∂S′)2
.

Substituting S′ = λ · S into this equation and taking into account that

∂V

∂(λ · S)
=

1

λ
· ∂V
∂S

and
∂2V

(∂(λ · S))2
=

1

λ2
· ∂

2V

∂S2
,

we get the following formula:

∂V

∂S′
= c0(λ · S) · V + c1(λ · S) · 1

λ
· ∂V
∂S

+ c2(λ · S) · 1

λ2
· ∂

2V

(∂S)2
. (7)
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The equations (5) and (7) should be equivalent, thus, their right-hand sides mut
coincide for all possible values of the function V and of its derivatives. Thus,
the coefficients at V and at its derivatives must be equal for all possible values
of S and λ.

By comparing the coefficients at V , we conclude that c0(λ · S) = c0(S) for
all λ and S. In particular, for S = 1 and λ = x, we conclude that c0(x) = c0(1)
for all x, i.e., that the function c0(x) is a constant. Let us denote this constant
by c0.

By comparing the coefficients at the first derivative of V , we conclude that

c1(λ · S) · 1

λ
= c1(S), i.e., equivalently, that c1(λ · S) = λ · c1(S) for all λ and S.

In particular, for S = 1 and λ = x, we conclude that c1(x) = c1(1) · x for all x,

i.e., that c1(x) = c1 · x, where we denoted c1
def
= c1(1).

Similarly, by comparing the coefficients at the second derivative of V , we

conclude that c2(λ ·S) · 1

λ2
= c2(S), i.e., equivalently, that c2(λ ·S) = λ2 · c2(S)

for all λ and S. In particular, for S = 1 and λ = x, we conclude that c2(x) =

c2(1) · x2 for all x, i.e., that c2(x) = c2 · x2, where we denoted c2
def
= c2(1).

Substituting the resulting expressions for the functions ci(S) into the formula
(5), we get the following equation:

∂V

∂t
= c0 · V + c1 · S ·

∂V

∂S
+ c2 · S2 · ∂

2V

∂S2
. (8)

We got the desired derivation. The formula (8) is exactly the Black-Scholes
equation. So we indeed provided a derivation of the Black-Scholes equation
that does not use any of the previously used too-strong assumptions about the
corresponding process – in effect, the only requirement that we used was scale-
invariance.

3 Conclusions and Future Work

What we did. To estimate the price of options, practitioners use special Black-
Scholes equations, equations whose authors received the 1997 Nobel Price in
Economics. The main challenge with these equations is that they work sur-
prisingly well in many practical situations, while their usual derivation is based
on many strong statistical assumptions, assumptions which are, in general, not
empirically valid. It is therefore desirable to look for an alternative deriva-
tion of these equations, derivation that would not depends on these too-strong
assumptions.

In this paper, we are addressing this challenge by providing a new derivation
of the Black-Scholes equations, a derivation for which the only main assumption
is a physically reasonable assumption of scale-invariance. The existence of such
derivation makes us more confident that Black-Scholes equations will lead to
good estimates in new situations as well.
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What next? Scale-invariance not only helps to derive the original (approxi-
mate) Black-Scholes equations – it can also help to come up with more general –
and hopefully, more accurate – equations. For example, if we allow third order
terms in the Taylor expansion in S, then arguments similar to the ones above
lead to the following more general equation:

∂V

∂t
= c0 · V + c1 · S ·

∂V

∂S
+ c2 · S2 · ∂

2V

∂S2
+ c3 · S3 · ∂

3V

∂S3
.

Alternatively, if we keep only second order terms in the expansion in S
but allow quadratic terms in the expansion in V , then scale-invariance leads to
another more general formula:

∂V

∂t
= c0 · V + c1 · S ·

∂V

∂S
+ c2 · S2 · ∂

2V

∂S2
+

c00 · S−1 · V 2 + c01 · V ·
∂V

∂S
+ c11 · S−1 ·

(
∂V

∂S

)2

+

c02 · V · S ·
∂2V

∂S2
+ c12 · S2 · ∂V

∂S
· ∂

2V

∂S2
+ c22 · S3 ·

(
∂2V

∂S2

)2

.

We hope that some of these equations will lead to more accurate estimates for
options.
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