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Abstract

Once we measure the values of a physical quantity at certain spatial
locations, we need to interpolate these values to estimate the value of this
quantity at other locations x. In geosciences, one of the most widely used
interpolation techniques is inverse distance weighting, when we combine
the available measurement results with the weights inverse proportional
to some power of the distance from x to the measurement location. This
empirical formula works well when measurement locations are uniformly
distributed, but it leads to biased estimates otherwise. To decrease this
bias, researchers recently proposed a more complex dual inverse distance
weighting technique. In this paper, we provide a theoretical explanation
both for the inverse distance weighting and for the dual inverse distance
weighting. Specifically, we show that if we use the general fuzzy ideas
to formally describe the desired property of the interpolation procedure,
then physically natural scale-invariance requirement select only these two
distance weighting techniques.

1 Formulation of the Problem

Need for interpolation of spatial data. In many practical situations, we are
interested in the value of a certain physical quantity at different spatial locations.
For example, in geosciences, we may be interested in how elevation and depths
of different geological layers depend of the spatial location. In environmental
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sciences, we may be interested in the concentration of different substances in
the atmosphere at different locations. etc.

In principle, at each location, we can measure – directly or indirectly –
the value of the corresponding quantity. However, we can only perform the
measurement at a finite number of locations. Since we are interested in the
values of the quantity at all possible locations, we need to estimate these values
based on the measurement results – i.e., we need to interpolate and extrapolate
the spatial data.

In precise terms: we know the values qi = q(xi) of the quantity of interest q
at several locations xi, i = 1, 2, . . . , n. Based on this information, we would like
to estimate the value q(x) of this quantity at a given location x.

Inverse distance weighting. A reasonable estimate q for q(x) is a weighted

average of the known values q(xi): q =
n∑
i=1

wi ·qi, with
n∑
i=1

wi = 1. Naturally, the

closer is the point x to the point xi, the larger should be the weight wi – and if
the distance d(x, xi) is large, then the value q(xi) should not affect our estimate
at all. So, the weight wi with which we take the value qi should decrease with
the distance.

Empirically, it turns out that the best interpolation is attained when we
take the weight proportional to some negative power of the distance: wi ∼
(d(x, xi))

−p for some p > 0. Since the weights have to add up to 1, we thus get

wi =
(d(x, xi))

−p

n∑
j=1

(d(x, xj))−p
.

This method – known as inverse distance weighting – is one of most widely used
spatial interpolation methods; see, e.g., [3, 4, 5, 8, 9, 14].

First challenge: why inverse distance weighting? In general, the fact
that some algorithm is empirically the best means that we tried many other
algorithms, and this particular algorithm worked better than everything else we
tried. In practice, we cannot try all possible algorithms, we can only try finitely
many different algorithms. So, in principle, there could be an algorithm that we
did not try and that will work better than the one which is currently empirically
the best.

To be absolutely sure that the empirically found algorithm is the best, it
is thus not enough to perform more testing: we need to have some theoreti-
cal explanation of this algorithm’s superiority. Because of this, every time we
have some empirically best alternative, it is desirable to come up with a theo-
retical explanation of why this alternative is indeed the best – and if such an
explanation cannot be found, maybe it this alternative is actually not the best?

Thus, the empirical success of inverse distance weighting prompts a natural
question: is this indeed the best method? This is the first challenge that we will
deal with in this paper.
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Limitations of inverse distance weighting. While the inverse distance
weighting method is empirically the best among different distance-dependence
interpolation techniques, it has limitations; see, e.g., [7].

Specifically, it works well when we have a reasonably uniformly distributed
spatial data. The problem is that in many practical cases, we have more mea-
surements in some areas and fewer in others. For example, when we measure
meteorological quantities such as temperature, humidity, wind speed, we usually
have plenty of sensors (and thus, plenty of measurement results) in cities and
other densely populated areas, but much fewer measurements in not so densely
populated areas – e.g., in the deserts.

Let us provide a simple example explaining why this may lead to a problem.
Suppose that we have two locations A andB at which we perform measurements:

• Location A is densely populated, so we have two measurement results qA
and qA′ from this area.

• Location B is a desert, so we have only one measurement result qB from
this location.

Since locations A and A′ are very close, the corresponding values are also very
close, so we can safely assume that they are equal: qA = qA′ . Suppose that we
want to use these three measurement results to predict the value of the quantity
x at a midpoint C between the locations A and B.

Since C is exactly in the middle between A and B, when estimating qC ,
intuitively, we should combine the values qA and qB with equal weights, i.e.,

take qC =
qA + qB

2
. From the commonsense viewpoint, it should not matter

whether we made a single measurement at the location A or we made two
different measurements.

However, this is not what we get if we apply the inverse distance weighting.
Indeed, in this case, since all the distance are equal d(A,C) = d(A′, C) =
d(B,C), the inverse distance weighting leads to

qC =
qA + qA′ + qB

3
=

2

3
· qA +

1

3
· qB .

Dual inverse distance weighting: an empirically efficient way to over-
come this limitation. To overcome the above limitation, a recent paper [7]
proposed a new method called dual inverse distance weighting, a method that
is empirically better than all previously proposed attempts to overcome this
limitation.

In this method, instead of simply using the weight wi ∼ (d(x, xi))
−p de-

pending on the distance, we also give more weight to the points which are more
distant from others – and less weight to points which are close to others, by

using a formula wi ∼ (d(x, xi))
−p ·

(∑
j 6=i

(d(xi, xj))
p2

)
, for some p2 > 0.
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Let us show, on an example, that this idea indeed helps overcome the above
limitation. Indeed, in the above example of extrapolating from the three points
A ≈ A′ and B to the midpoint C between A and B (for which d(A,C) =
d(B,C)), we have d(A,A′) ≈ 0 and d(A,B) ≈ d(A′, B). Thus, we get the
following expressions for the additional factors fi =

∑
j 6=i

(d(xi, xj))
p2 :

fA = (d(A,A′))p2 + (d(A,B))p2 ≈ (d(A,B))p2 ,

fA′ = (d(A′, A))p2 + (d(A′, B))p2 ≈ (d(A,B))p2 ,

and
fB = (d(B,A))p2 + (d(B,A′))p2 ≈ 2(d(A,B))p2 .

So, the weights wA and wA′ with which we take the values qA and qA′ are
proportional to

wA ≈ wA′ ∼ (d(A,C))−p · fA ≈ (d(A,C))−p · (d(A,B))p2 ,

while
wB ≈ wB ∼ (d(B,C))−p · f2 ≈ (d(A,C))−p · 2(d(A,B))p2 .

The weight wB is thus twice larger than the weights wA and wA′ : wB = 2wA =
2wA′ . Ao the interpolated value of qC is equal to

qC =
wA · qA + wA′ · qA′ + wB · qB

wA + wA′ + wB
=
wA · qA + wA · qA′ + 2wA · qA

wA + wA′ + 2wA
.

Dividing both numerator and denominator by 2wA and taking into account

that qA′ = qA, we conclude that qC =
qA + qB

2
, i.e., exactly the value that we

wanted.

Second challenge: why dual inverse distance weighting? In view of the
above, it is also desirable to come up with a theoretical explanation for the dual
inverse weighting method as well. This is the second challenge that we take on
in this paper.

2 What Is Scale Invariance and How It Ex-
plains the Empirical Success of Inverse Dis-
tance Weighting

What is scale invariance. When we process the values of physical quantities,
we process real numbers. It is important to take into account, however, that the
numerical value of each quantity depends on the measuring unit. For example,
suppose that we measure the distance in kilometers and get a numerical value d
such as 2 km. Alternatively, we could use meters instead of kilometers. In this
case, the exact same distance will be described by a different number: 2000 m.
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In general, if we replace the original measuring unit with a new one which
is λ times smaller, all numerical values will be multiplied by λ, i.e., instead of
the original numerical value x, we will get a new numerical value λ · x.

Scale-invariance means, in our case, that the result of interpolation should
not change if we simply change the measuring unit. Let us analyze how this
natural requirement affects interpolation.

General case of distance-dependent interpolation. Let us consider the
general case, when the further the point, the smaller the weight, i.e., in precise
terms, when the weight wi is proportional to f(d(x, xi)) for some decreasing
function f(z): wi ∼ f(d(x, xi)). Since the weights should add up to 1, we
conclude that

wi =
f(d(x, xi))∑
j

f(d(x, xj))
, (1)

and thus, our estimate q for q(x) should take the form

q =

n∑
i=1

f(d(x, xi))∑
j

f(d(x, xj))
· qi. (2)

In this case, scale-invariance means that for each λ > 0, if we replace all the
numerical distance values d(x, xi) with “re-scaled’ values λ · d(x, xi), then we
should get the exact same interpolation result, i.e., that for all possible values
of qi and d(x, xi), we should have

n∑
i=1

f(λ · d(x, xi))∑
j

f(λ · d(x, xj))
· qi =

n∑
i=1

f(d(x, xi))∑
j

f(d(x, xj))
· qi. (3)

Scale-invariance leads to inverse distance scaling. Let us show that the
requirement (3) indeed leads to inverse distance scaling.

Indeed, let us consider the case when we have only two measurement results:

• at the point x1, we got the value q1 = 1, and

• at point x2, we got the value q2 = 0.

Then, for any point x, if we use the original distance values d1
def
= d(x, x1) and

d2
def
= d(x, x2), the interpolated value q at this point will have the form

q =
f(d1)

f(d1) + f(d2)
.

On the other hand, if we use a λ times smaller measuring unit, then the extrap-
olation formula leads to the values

f(λ · d1)

f(λ · d1) + f(λ · d2)
.
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The requirement that the interpolation value does not change if we simply
change the measuring unit implies that these two expression must coincide,
i.e., that we must have:

f(λ · d1)

f(λ · d1) + f(λ · d2)
=

f(d1)

f(d1) + f(d2)
. (4)

If we take the inverse of both sides of this formula, i.e., flip the numerator and
denominator in both sides, we get

f(λ · d1) + f(λ · d2)

f(λ · d1)
=
f(d1) + f(d2)

f(d1)
. (5)

Subtracting number 1 from both sides, we get a simplified expression

f(λ · d2)

f(λ · d1)
=
f(d2)

f(d1)
. (6)

If we divide both sides by f(d2) and multiply by f(λ ·d1), we get the equivalent
equality in which variables d1 and d2 are separated:

f(λ · d2)

f(d2)
=
f(λ · d1)

f(d1)
. (7)

The left-hand side of this formula does not depend on d1; thus, the right-hand
side does not depend on d1 either, it must thus depend only on λ. Let us denote

this right-hand side by c(λ). Then, from
f(λ · d1)

f(d1)
= c(λ), we conclude that

f(λ · d1) = c(λ) · f(d1) (8)

for all possible values of λ > 0 and d1.
It is known that for decreasing functions f(z), the only solutions to the

functional equation (8) are functions f(z) = c · z−p for some p > 0; see, e.g., [1].
For this function f(z), the extrapolated value has the form

∑
fi · qi, with

fi =
c · (d(x, xi))

−p

n∑
j=1

c · (d(x, xj))−p
.

If we divide both numerator and denominator by c, we get exactly the inverse
distance weighting formula.

Thus, scale-invariance indeed leads to inverse distance weighting.

Comment. For smooth function f(x), the above result about solutions of the
functional equation can be easily derived. Indeed, differentiating both sides of
the equality (8) by λ and taking λ = 1, we get

f ′(d1) · d1 = α · f(d1),
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where we denoted α
def
= c′(1), i.e., we have

df

dd1
= α · f.

If we divide both sides by f and multiply by dd1, we separate d1 and f :
df

f
=

α · dd1
d1

. Integrating both sides, we get ln(f) = α · ln(d1) + C, where C is the

integration constant. Applying exp(z) to both sides and taking into account
that exp(ln(f)) = f and

exp(α·ln(d1)+C) = exp(α·ln(d1))·exp(C) = exp(C)·(exp(ln(d1))α = exp(C)·dα1 ,

we get f(d1) = c · dα1 , where we denoted c
def
= exp(C). Since the function f(z) is

decreasing, we should have α < 0, i.e., α = −p for some p > 0. The statement
is proven.

3 Scale Invariance and Fuzzy Techniques Ex-
plain Dual Inverse Weighting

What we want: informal description. In the previous section, when com-
puting the estimate q for the value q(x) of the desired quantity at a location
x, we used, in effect, the weighted average of the measurements results qi, with
the weights decreasing as the distance d(x, xi) decreases – i.e., in more precise
terms, with weights proportional to f(d(x, xi)) for some decreasing function
f(z). In this case, scale-invariance implies that f(z) = z−p for some p > 0.

As we have mentioned in Section 1, we need to also give more weight to
measurements at locations xi which are far away from other location – and,
correspondingly, less weight to measurements at locations which are close to
other locations. In terms of weights, we would like to multiply the previous
weights f(d(x, xi)) = (d(x, xi))

−p by an additional factor fi depending on how
far away is location xi from other locations. The further away the location
xi from other locations, the higher the factor fi shall be. In other words, the
factor fi should be larger or smaller depending on our degree of confidence in
the following statement:

d(xi, x1) is large and d(xi, x2) is large and . . . d(xi, xn) is large.

Let us use fuzzy techniques to translate this informal statements into
precise terms. To translate the above informal statement into precise terms,
a reasonable idea is to use fuzzy techniques – techniques specifically designed
for such a translation; see, e.g., [2, 6, 10, 12, 13, 15]. In this technique, to each
basic statement – like “d is large” – we assign a degree to which, according to
the expert, this statement is true. This degree is usually denoted by µ(d). In
terms of these notations:
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• the degree to which d(xi, x1) is large is equal to µ(d(xi, x1));

• the degree to which d(xi, x2) is large is equal to µ(d(xi, x2)); etc.

To estimate the degree to which the above “and”-statement is satisfied, fuzzy
techniques suggest that we combine the above degrees by using an appropriate
“and”-operation (= t-norm) f&(a, b)). Thus, we get the following degree:

f&(µ(d(xi, x1)), µ(d(xi, x2)), . . . , µ(d(xi, xi−1)), µ(d(xi, xi+1)), . . . , µ(d(xi, xn))).

It is known – see, e.g., [11] – that for any “and”-operation and for any ε > 0,
there exists an ε-close “and”-operation of the type f&(a, b) = g−1(g(a) + g(b))
for some monotonic function g(a), where g−1(a) denotes the inverse function
(i.e., the function for which g−1(a) = b if and only if g(b) = a). Since the ap-
proximation error ε can be arbitrarily small, for all practical purposes, we can
safely assume that the actual “and”-operation has this g-based form. Substitut-
ing this expression for the “and”-operation into the above formula, we conclude
that fi should monotonically depend on the expression

g−1(g(µ(d(xi, x1))) + . . .+ g(µ(d(xi, xn)))).

Since the function g−1 is monotonic, this means that fi is a monotonic function
of the expression

G(d(xi, x1)) + . . .+G(d(xi, xn))),

where we denoted G(d)
def
= g(µ(d)). In other words, we conclude that

fi = F (G(d(xi, x1)) + . . .+G(d(xi, xn))) (9)

for some monotonic function F (z).
So, we get an estimate

q =

n∑
i=1

fi · (d(x, xi))
−p · qi

n∑
j=1

fj · (d(x, xj))−p
, (10)

where the factors fi are described by the formula (9).

Let us recall the motivation for the factors fi. As we have mentioned
earlier, the main motivation for introducing the factors fi is to make sure that

for the midpoint C between A and B, we will have the estimate
qA + qB

2
, even

if we perform two (or more) measurements at the point A. Let us analyze for
which functions F (z) and G(z) this requirement is satisfied.

For the purpose of this analysis, let us consider the case when we have m
measurement locations A1, . . . , Am in the close vicinity of the location A and one
measurement result at location B. Let d denote the distance d(A,B) between
the locations A and B. For all the measurement locations A1, . . . , Am, and
B, the distance to the point C is the same – equal to d/2. Thus, in this case,
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the factors (d(x, xi))
−p in the formula (10) are all equal to each other. So, we

can divide both the numerator and the denominator by the formula (10) by this
common factor, and get a simplified expression

q =

n∑
i=1

fi · qi
n∑
j=1

fj

.

Since for the points A1, . . . , Am we have the same measurement results qi (we
will denote them by qA), and the same factors fi (we will denote them by fA),
we get

q =
m · fA · qA + fB · qB

m · fA + fB
. (11)

We want to make sure that this value is equal to the arithmetic average
qA + qB

2
.

Thus, the coefficient at qA in the formula (11) should be equal to 1/2:

m · fA
m · fA + fB

=
1

2
.

If we multiply both side by their denominators and subtract m · fA from both
sides, we get m · fA = fB . Due to the formula (9), this means

m · F (G(d) + (m− 1) ·G(0)) = F (m ·G(d)). (12)

In the limit d = 0, this formula becomes m ·F (m ·G(0)) = F (m ·G(0)), thus
F (m·G(0)) = 0. Since the function F (z) is monotonic, we cannot haveG(0) 6= 0,
since then we would have F (z) = 0 for all z. Thus, G(0) = 0, F (G(0)) = F (0) =
0, and the formula (12) takes the form F (m ·G(d)) = m ·F (G(d)). This is true
for any value z = G(d), so we have F (m · z) = m · F (z) for all m and z.

• In particular, for z = 1, we get F (m) = c ·m, where c
def
= F (1).

• For z = 1/m, we then have F (1) = c = m · F (1/m), hence

F (1/m) = c · (1/m).

• Similarly, we get F (p/q) = F (p·(1/q)) = p·F (1/q) = p·(c·(1/q)) = c·(p/q).
So, for all rational values z = p/q, we get F (z) = c · z.

Since the function F (z) is monotonic, the formula F (z) = c · z is true for all
values z.

Dividing both the numerator and the denominator by the coefficient c, we
conclude that

q =

n∑
i=1

Fi · (d(x, xi))
−p · qi

n∑
j=1

Fj · (d(x, xj))−p
, (13)

9



where we denoted

Fi
def
= G(d(xi, x1)) + . . .+G(d(xi, xn)). (14)

Let us now use scale-invariance. We want to make sure that the estimate
(13) does not change after re-scaling d(x, y) → d′(x, y) = λ · d(x, y), i.e., that
the same value q should be also equal to

q =

n∑
i=1

F ′i · (d′(x, xi))−p · qi
n∑
j=1

F ′j · (d′(x, xj))−p
, (15)

where
F ′i = G(d′(xi, x1)) + . . .+G(d′(xi, xn)). (16)

Here, (d′(x, xi))
−p = λ−p · (d(x, xi))

−p. Dividing both the numerator and the
denominator of the right-hand side of the formula (15) by λ−p, we get a simpli-
fied expression

q =

n∑
i=1

F ′i · (d(x, xi))
−p · qi

n∑
j=1

F ′j · (d(x, xj))−p
. (17)

The two expressions (13) and (17) are linear in qi. Thus, their equality
implies that coefficients at each qi must be the same. In particular, this means
that the ratios of the coefficients at q1 and q2 must be equal, i.e., we must have

F1 · (d(x, x1))−p

F2 · (d(x, x2))−p
=
F ′1 · (d(x, x1))−p

F ′2 · (d(x, x2))−p
,

i.e.,
F1

F2
=
F ′1
F ′2
.

For the case when we have three points with d(x1, x2) = d(x1, x3) = d and
d(x2, x3) = D, due to the formula (14), this means that

2G(d))

G(d) +G(D)
=

2G(λ · d))

G(λ · d) +G(λ ·D)
.

Inverting both sides, multiplying both sides by 2 and subtracting 1 from both
sides, we conclude that

G(D)

G(d)
=
G(λ ·D)

G(λ · d)

for all λ, d, and D. We already know – from the first proof – that this implies
that G(d) = c ·dp2 for some c and p2, and that, by deleting both numerator and
denominator by c, we can get c = 1.

Thus, we indeed get a justification for the dual inverse distance weighting.
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