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Abstract

In the ideal world, we know the exact consequences of each action.
In this case, it is relatively straightforward to compare different possible
actions and, as a result of this comparison, to select the best action.
In real life, we only know the consequences with some uncertainty. A
typical example is interval uncertainty, when we only know the lower and
upper bounds on the expected gain. How can we compare such interval-
valued alternatives? A usual way to compare such alternatives is to use
the optimism-pessimism criterion developed by Nobelist Leo Hurwicz. In
this approach, we maximize a weighted combination of the worst-case
and the best-case gains, with the weights reflecting the decision maker’s
degree of optimism. There exist several justifications for this criterion;
however, some of the assumptions behind these justifications are not 100%
convincing. In this paper, we propose new, hopefully more convincing
justifications for Hurwicz’s approach.



1 Formulation of the Problem

Need to make decisions under interval uncertainty. In many real-life
situations, we need to make a decision, i.e., we need to select one of the possible
alternatives. For example, we want to select the best investment strategy, we
need to decide whether to accept a new job offer, etc.

In the ideal world, we should know the exact consequence of each possible
alternative. In such an ideal case, we select an alternative which is the best for
us. For example, if the goal of the investment is to save for retirement, then
we should select the investment strategy that will bring us the larger amount
of money by the expected retirement date.

In real world, there is uncertainty. We can rarely predict the exact con-
sequences of each action. In the simplest case, instead of knowing the exact
amount of money m resulting from each alternative, we only know that this
amount will be somewhere between the values m and m. In other words, we
do not know the exact value m; instead, we only know the interval [m,m] that
contains the actual (not yet known) value m. Such a situation is known as the
situation of interval uncertainty. If we know intervals corresponding to different
alternatives, which alternative should we select?

In other cases, in addition to the bounds m and 7, we also have some infor-
mation about which values from the corresponding interval are more probable
and which are less probable. In other words, we have some information — usu-
ally partial — about the actual probability distribution on the interval [m,mm].
Sometimes, we know the exact probability distribution. In this case, we can,
e.g., select the alternative for which the expected gain is the largest — of, if we
want to be cautious, e.g., the alternative for which the gain guaranteed with a
certain probability (e.g., 80%) is the largest.

In practice, we rarely know the exact probability distribution. Even if we
know that the distribution is, e.g., Gaussian, we still do not know the exact
values of the corresponding parameters — from the observations, we can only
determine parameters with some uncertainty. For different possible combina-
tions of these parameters, the expected gain — or whatever else characteristic
we use — may take different values. Thus, for each alternative, instead of the
ezact value m of the corresponding objective function (such as expected gain),
we have a whole interval [m, m)] of possible values of this objective function. So,
we face the exact same problem as in the simplest possible case — we need to
select an alternative in a situation when for each alternative, we only know the
interval of possible values of the objective function.

How decisions under interval uncertainty are currently made. As we
have mentioned earlier, decision making under interval uncertainty is an impor-
tant practical problem. Not surprisingly, methods for solving this problem have
been known for many decades. Usually, practitioners use a solution proposed in
the early 1950s by the future Nobelist Leo Hurwicz; see, e.g., [2, 3, 5]. According
to this solution, a decision maker should:

e first, select a parameter « from the interval [0, 1], and then



e select an alternative for which the following combination attains the largest
possible value:
a-u+(1-a)- u.
This idea is known as the optimism-pessimism criterion, and the selected value
« is known as the optimism parameter. The reason for these terms is straight-
forward:

e If o = 1, this means that the decision maker simply selects the alternative
with the largest possible value of M. In other words, the decision maker
completely ignores the possibility that the outcome of each alternative can
be smaller than in the best possible case, and bases his/her decision exclu-
sively on comparing these best possible consequences of different actions.
This is clearly an extreme case of an optimist.

e Vice versa, if a = 0, this means that the decision maker simply selects
the alternative with the largest possible value of m. In other words, the
decision maker completely ignores the possibility that the outcome of each
alternative can be better that in the worst possible case, and bases his/her
decision exclusively on comparing these worst possible consequences of
different actions. This is clearly an extreme case of a pessimist.

Both these situations are extreme. In real life, most people take into account
both good and bad possibilities, i.e., in Hurwicz terms, they make decisions
based on some intermediate value oo — which is larger than the pessimist’s 0 but
smaller than the optimist’s 1.

How can we explain the current approach to decision making under
uncertainty. There exist reasonable explanations for Hurwicz criteria, both:

e for the case when the outcome of each alternative is simply monetary and

e for the case when the outcome is not monetary — in this case, decision
theory helps us describe the user’s preferences in terms of special values
known as utilities; see, e.g., [1, 3, 5, 6, 7] and references therein.

Remaining problem and what we do in this paper. In both monetary and
utility cases, to derive Hurwicz’s formula, we need to make certain assumptions;

e some of these assumptions are more reasonable,

e some of these assumptions are slightly less convincing.
Natural questions are:

e Do we need these somewhat less convincing assumptions?

e Can we avoid them altogether — and, if not, can we replace them with
somewhat more convincing assumptions?



These are the question that we will analyze — and answer — in this paper.

Structure of this paper. We will start the paper with the easier-to-describe
and easier-to-analyze case of monetary alternatives. First, in Section 2, we
describe the usual assumptions leading to the Hurwicz criterion, explain how
the Hurwicz criterion can be derived from these assumptions (in this, we largely
follow [4]), and why some of these assumptions may not sound fully convincing.
Then, in Section 3, we present new — hopefully more convincing — assumptions,
and show how Hurwicz criterion can be derived from the new assumptions.

Then, we deal with the utility case. In Section 4, we briefly remind the
readers who are not familiar with all the technical details of decision theory,
what is utility and what are the properties of utility. In Section 5, we describe
the usual assumptions leading to Hurwicz criterion for the utility case (they are
somewhat different from the monetary case), explain how Hurwicz criterion can
be derived from these assumptions (in this, we also largely follow [4]), and why
some of these assumptions may not sound fully convincing. Finally, in Section
6, we show that the Hurwicz criterion can be derived from the (hopefully) more
convincing assumptions in the utility case as well.

2 Monetary Case: Usual Derivation of the Hur-
wicz Criterion and the Limitations of This
Derivation

To make a decision, we need to have an exact numerical equivalent
for each interval. We want to be able to compare different alternatives with
interval uncertainty. In particular, for each interval-valued alternative [m,7m)
and for each alternative with a known exact monetary value m, we need to be
able to decide:

e whether the exact-valued alternative is better or
e whether the interval-valued alternative is better.

Of course, if m < m, then no matter what is the actual value from the
interval [m,m], this value will be larger than m. Thus, in this case, the interval
alternative is clearly better. We will denote this by m < [m,m].

Similarly, if m > m, then no matter what is the actual value from the
interval [m,m], this value will be smaller than m. Thus, in this case, the interval
alternative is clearly worse: [m,m] < m.

If m < [m,m] and m’ < m, the clearly m’ < [m,m]. Similar, if [m,m] < m
and m < m/, then [m,m] < m/'.

One can show that because of this, there is a threshold value separating the
two cases, namely, the value

sup{m : m < [m,m]} = inf{m : [m,m] < m}.

Let us denote this threshold value — depending on m and m — by f(m,m).



By definition, for every ¢ > 0, we have
f(m,m) —e < [m,m| < f(m,m) +¢.

In particular, this property holds for an arbitrarily small €, including such small
€ that no one will notice the difference between the value m and the values m—e
and m+e. So, from the practical viewpoint, we can say that the interval [m,m]
is equivalent to the monetary value f(m,m). We will denote this equivalence by

[m, m] = f(m,m).

From this viewpoint, all we need to do to describe decision making under interval
uncertainty is to describe the corresponding function f(m,m).

The numerical value f(m,m) should always be between m and 7. Since,
as we have mentioned earlier, for every value m < m, we have m < [m, ], the
set {m : m < [m,m|} contains all the values from the set (—oo,m). Thus, its
supremum f(m,7) has to be greater than or equal to all the values m < m, in
particular, than all the values m =m — 1/n. So, we must have

m—1/n < f(m,m)

for all n. In the limit n — oo, we conclude that m < f(m,m).
Similarly, since for every value m > m, we have [m,m] > m, the set

{m: [m, ] < m}

contains all the values from the set (7, 00). Thus, its infimum f(m, ™) has to
be smaller than or equal to all the values m > m — in particular, than all the
values m = m + 1/n. So, we must have f(m,m) < m + 1/n for all m. In the
limit n — oo, we conclude that f(m,m) < m.

Based on the two above examples, we should always have m < f(m,m) < m.

Let us prepare for the usual derivation of Hurwicz criterion. In order
to explain the usual derivation of Hurwicz criterion from several assumptions,
let us first provide the usual motivation for these assumptions.

Monotonicity. Let us assume that we start with an interval [m, 7], and then
we:

e delete all the lowest-value options — i.e., options for which m < m’ for
some m’ > m, and/or:

e add several higher-value options, with m > m, e.g., all the values from m
to some larger value m’ > m.

After this, we get a clearly better interval [m/,m’]. Thus, we conclude that
the function f(m,m) should be monotonic: if m < m/ and m < W/, then
f(m,m) < f(m!,m).

Additivity. Suppose that we have two situations:



e in the first situation, we can get any value from g to @, and
e in the second situation, we can get any value from b to b.

By definition of the function f(m,m), we are willing to pay the value f(a,a)
to participate in the first situation, and the value f (Q,E) to participate in the
second situation.

What if we consider these two choices as a single situation? In this case,
the smallest possible value that we get overall — in both situations — is when we
get the smallest possible value @ in the first situation and the smallest possible
value b in the second situation. In this case, the overall value is a + b.

Similarly, the largest possible value that we get overall — in both situations —
is when we get the largest possible value @ in the first situation and the largest
possible value b in the second situation. In this case, the overall value is @ + b.

Thus, when we consider these two choices as a single situation, the interval of
possible monetary gains has the form [@ +b,a+ B] . So, the equivalent monetary
value of the two choices treated as a single situation is f (g +b,a+ 5).

It is reasonable to require that the price that we pay for two choices sold
together should be equal to the sum of the prices that we pay for two choices
taken separately, i.e., that f (g +b,a+ 5) = f(a,a)+ f (Q,E). This property is
known as additivity.

The usual derivation of Hurwicz criterion. Now, we are ready to describe
the usual derivation of Hurwicz criterion.

Definition 1.
e By a value function, we mean a function f(m,m) that assigns, to each

pair (m,m) of real numbers for which m <m, a real number f(m,m) for
which m < f(m,m) < m.

o We say that a value function f
and m <™, then f(m,m) < f

M) is monotonic if whenever m < m/

(m,
(!, 7).

o We say that a value function f(m,m) is additive if for all possible values
a<aandb<b, we have f (g+b,6+b) = f(a,a)+ f (Q,b).

e We say that a value function f(m,m) has a Hurwicz form if it has the
form f(m,m) =a-m+ (1 — «)-m for some o € [0,1].

Proposition 1. For a value function f(m,m), the following two conditions are
equivalent to each other:

e the value function is monotonic and additive;

e the value function has the Hurwicz form.

Proof. It is easy to prove that a Hurwicz-form value function is monotonic and
additive.



Vice versa, let us assume that a value function f(m, ) is monotonic and

additive. Let us denote o %' £(0,1).
Due to additivity, for every natural number n, we have

[0,1/n] +...+[0,1/n] (n times) = [0, 1],
thus
f(0,1/n) + ...+ f(0,1/n) (n times) =n- f(0,1/n) = f(0,1) = a,

hence f(0,1/n) =a - (1/n).
Similarly, for every m and n, we have

f(O,m/n) = f(0,1/n)+ ...+ £(0,1/n) (m times) =m - f(0,1/n) = a- (m/n).

For every real number r, we have m/n < r < (m+1)/n, where m def |r-n].
Thus, due to monotonicity, we have f(0,m/n) < f(0,r) < f(0,(m+1)/n), i.e.,
a-(m/n) < f(0,r) < a-(m+1)/n. Here, 0 <r —m/n < 1/n, so in the limit
n — oo, we have m/n — r and (m + 1)/n — r. Thus, the above inequality
leads to f(0,r) =a - 7.

In particular, for every m <, we have f(0,m —m) = «- (M — m). By the
property of a value function, we have m < f(m,m) < m, i.e., f(m,m) = m.
Thus, due to additivity,

f(m,m) = f(m+0,m+ (Mm—-m)) = f(m,m)+ f(0,Mm—m) =m+a- (—m).

One can easily check that this is indeed the Hurwicz expression.

Limitations. The above motivations are reasonably reasonable, but they may
not be 100% convincing,.

Indeed, we argued that if the worst-case scenario is possible for each of
the two situations, then it is possible that we have the worst-case scenario in
both situations. This may sound reasonable, but it is not in full agreement
with common sense. Indeed, e.g., when we fly from point A to point B, we
understand:

e that there may an unexpected delay at the airport A,
e that a plane may have a problem in flight and we will have to get back,

e that there may a problem at the airport B and we will get stuck on the
plane, etc.,

but we honestly do not believe that all these low-probable disasters will happen
at the same — this only happens in comedies describing lovable losers who always
get into trouble.

We can raise another issues about the additivity requirement: that additivity
assumes that for the combination of two items, we always pay the same price
as for the two items separately. Sometimes, this is true, but often, this is not



true: there are discounts if you buy several items (or several objects of the same
type) at the same time.

What should we do? Since the arguments that we used above to justify
the assumptions are not 100% convincing, maybe we can find somewhat more
convincing arguments in favor of Hurwicz formula — or, alternatively, maybe
these more convincing arguments can lead us to a different formula?

This is what we will analyze in the next section.

3 Monetary Case: New, Hopefully More Con-
vincing, Derivation of the Hurwicz Criterion

Shift-invariance. Suppose that we offer a user a package deal in which he/she
gets m dollars cash and an alternative in which he/she gets between m and m.
The equivalent value for the interval-value alternative is f(m, ), so the overall
value for this package is m + f(m,m).

On the other hand, if we consider this a package deal, then in this deal, we
get any amount between m + m and m + m. Thus, the value of this package
deal should be equal to f(m + m,m + ™). It is reasonable to require that
these two valuations should lead to the same result, i.e., that we should have
m+ f(m,m) = f(m + m,m + m). In mathematical terms, this property is
known as shift-invariance.

Discussion. At first glance shift-invariant is very similar to additivity. Indeed,
it can be viewed as a particular case of additivity, in which the first interval is
simply the interval [m,m] consisting of a single number m.

But good news is that both above objections to general additivity do not
apply here. Indeed, we are not talking about a combination of rare events, so
the first objection is not applicable. The second objection is also not applicable,
since while we may expect a discount if we buy two big bottles of milk, no one
expects a discount if we buy a bottle of milk and a fixed amount of money (e.g.,
when we ask to change a big banknote when paying).

Need for additional assumptions. If we limit ourselves only to shift-invariance,
we will get too many possibilities in addition to Hurwicz formula: specifically,
one can see that we can have a more general expression

f(m,m) = m + F(m —m),

where F'(z) is a monotonic function defined for all z > 0 for which F(z) < z
for all z —e.g., F(z) = z/(1 4+ z). (By the way, it is possible to show that the
above expression is the most general form of a monotonic shift-invariant value
function.)

To narrow down the class of possible value functions, we need to make ad-
ditional reasonable assumptions. We will describe one such assumption right
away.



A new assumption: transitivity. Let us start with the same interval [0, 1]
with which we started the proof of Proposition 1. Similarly to this proof, let us
denote the value f(0,1) corresponding to this interval by c.

What can we conclude that from the fact that f(0,1) = a? Well, due to
shift invariance, we can conclude that for every x, we have f(z,14+2) = a + x.
From the mathematical viewpoint, this is all that we can conclude. However,
from the common sense viewpoint, we can make yet another conclusion.

Indeed, e.g., for each x from the interval [0, 1], the alternative corresponding
to the interval [z,1 + z] is equivalent to getting a monetary amount « + :
[,1 4+ 2] = a+ 2. If we do not know which of these intervals the alternative
corresponds to — but we know that it corresponds to one of these alternatives,
this means that the actual gain can take any value from the wunion of these
intervals. Each of these intervals is equivalent to the value o + x, thus, the
union of these intervals is equivalent to the set of all possible values o+ x when
z € 0,1]:

U [z,1+z]={a+z:2€][0,1]}.
z€[0,1]

Let us estimate the left-hand side and the right-hand side of this equality.

e The smallest possible value in the left-hand side is when we take the
smallest value from the interval [z,1 4+ x| — i.e., the value x — for the
smallest possible value x from the interval [0, 1] (i.e., for the value z = 0).
Thus, the smallest possible value in the left-hand side is equal to 0.

e The largest possible value in the left-hand side is when we take the largest
value from the interval [z,1 + z] — i.e., the value 1 4+ = — for the largest
possible value x from the interval [0, 1] (i.e., for the value = 1). Thus,
the largest possible value in the left-hand side is equal to 1 + 1 = 2.

So, the left-hand side of the above equality is the interval [0, 2].
Similarly:

e The smallest possible value in the right-hand side is when we take the
smallest possible value z from the interval [0, 1], i.e., the value 2z = 0. Thus,
the smallest possible value in the right-hand side is equal to o + 0 = «.

e The largest possible value in the right-hand side is when we take the largest
possible value z from the interval [0,1], i.e., the value = 1. Thus, the
smallest possible value in the right-hand side is equal to a4 1.

So, the left-hand side of the above equality is the interval [a, 1 4 «].

Thus, the above equivalent takes the form [0,2] = [a,1 4+ a]. Good news
is that we already known — as a particular case of shift-invariance — that the
interval [a, 1 4 @] is equivalent to the value a + o = 2. Thus, by transitivity
of equivalence, we conclude that the interval [0, 2] is equivalent to 2« i.e., that
f£(0,2) = 2a. Then, by shift-invariance, we will get f(z,2 + z) = 2« + z for
each x.



By similarly combining intervals [z,1 + ] corresponding to = € [0,2], we
conclude that [0,3] = [a,2 + «], and since we already know that [, 2 + a] =
2a + «, by transitivity, we will have f(0,3) = 3a.

Instead of stacking intervals of width 1, we could similarly stack intervals of
a different width w.

New derivation of Hurwicz formula. It turns out that this way, we can
indeed get a new derivation of Hurwicz formula. Let us describe all this in
precise terms.

Definition 2.

e We say that a value function f(m,m) is shift-invariant if for every m and
for all m <, we have m + f(m,m) = f(m +m,m +m).

o We say that a value function is transitive if for each w and for all m <m,
we have f (ﬁ,f) = f(r,T), where

7] E U mw+m]
me[m,m]

and et
[r,7] = {f(m,m+w) :m € [m,m]}.

Comment. In this definition, we only described transitivity for the case when
all combined intervals have the exact same width. Our main motivation for
this restriction is that, as we will show, only such transitivity is needed — and
in derivations, it is always desirable to avoid unnecessarily general assumptions
and to limit ourselves only to weakest possible assumptions — weakest possible
among those that will lead to the desired derivation.

There is another reason for this limitation: as we how later in this section,
if we generalize this property too much, then there will be no realistic value
function at all that would satisfy thus generalized property.

Proposition 2. For a value function f(m,m), the following two conditions are
equivalent to each other:

e the value function is monotonic, shift-invariant, and transitive;

e the value function has the Hurwicz form.

Proof. Similarly to our above arguments, we can see that [ﬁ, f] = [m, ™ + w),
so f(4,0) = f(m,m+w).
Due to the monotonicity of the value function, we have

[r,7] = [f(m, ™), f(m + w, 0 + w)].
Due to shift-invariance, we have

[r,7] = [f(m, M), w + f(m+w,m + w)],

10



5o, again due to shift-invariance — this time in relation to a shift by f(m,m) —
we get [r,7] = f(m,m) + [0, w].

Thus, again due to shift-invariance, f(r,7) = f(m,m) + f(0,w). Therefore,
transitivity means that

One can easily see that the Hurwicz formula is shift-invariant and satisfies
the above property for all w and for all m < m.

Vice versa, let us assume that we have a value function that satisfies this
property for all w and for all m < m. In particular, for m = 0, this means
that f(0,m + w) = f(0,m) + f(0,w). This is exactly the particular case of
the additivity property that we used (as well as monotonicity) in the proof of
Proposition 1 to prove that f(0,7) = « - r for all real numbers r. From this
formula, in that proof, we used, in effect, shift-invariance to prove that the
Hurwicz formula is indeed true for all m < M. Since we still assume shift-
invariance, this means that we have a derivation of the Hurwicz formula in this
case as well.

The proposition is proven.

Discussion: we cannot generalize the transitivity property too much.
Let us show that the transitivity assumption cannot be realistically generalized
too much, to cases when united intervals have different widths.

Definition 3. We say that a wvalue function is fully transitive if for each

family of intervals {[m(a), m(a)]}aca for which both sets |J [m(a),m(a)] and
acA

{f(m(a),m(a)) : a € A} are intervals, we have f ((,0) = f(r,T), where we
denoted

and

[Qﬂ = {f(m(a),m(a)) HIAS A}

Proposition 3. For a value function f(m,m), the following two conditions are
equivalent to each other:

e the value function is monotonic, shift-invariant, and fully transitive;

o the value function has the Hurwicz form with o =0 or a = 1.

Discussion. So, full transitivity is satisfied only in the two extreme (and un-
realistic) cases:

e when o = 0 — the case of full pessimism, and

e when o = 1 — the case of full optimism.

11



Proof. One can easily check that both extreme value functions f(m,m) = m
(that corresponds to a = 0) and f(m,m) = m (that corresponds to a = 1) are
fully transitive.

Let us prove that, vice versa, every monotonic shift-invariant and fully tran-
sitive value function coincides with one of the two extreme functions. Indeed,
since the general condition should be satisfied for all possible families of inter-
vals [m(a),m(a)], in particular, it should be satisfied for all the families from
Definition 2. Thus, due to Proposition 2, the value function should have the
Hurwicz form.

Now, for the family [0, a], where a € A = [0, 1], the union [ﬁ,ﬂ is simply
equal to [0,1], so f (ﬁ,?) = f(0,1) = a.

On the other hand, here, f(0,a) = « - a, so

[fvﬂ = {a raac [07 ”} = [O,CVL
thus f(r,7) = a-a = a?. Thus, the generalized transitivity is satisfied only
when a = o?, i.e., when either = 0 or a = 1.
The proposition is proven.

4 What Is Utility and What Are the Properties
of Utility: A Brief Reminder

What is utility. To apply computer-based number-oriented tools for making
decisions in a non-monetary case, we need to describe the user’s preferences in
numerical terms. In decision theory (see, e.g., [1, 3, 5, 6, 7]), this is done as
follows.

Let us select the two extreme alternatives:

e a very bad alternative A_ which is worse than anything that we will
actually encounter, and

e a very good alternative A, which is better than anything that we will
actually encounter.

For each real number p from the interval [0, 1], we can form a lottery — we will
denote this lottery by L(p) — in which:

e we get the very good alternative A with probability p, and
e we get the very bad alternative A_ with the remaining probability 1 — p.

To find how valuable is each alternative A for the decision maker, we ask him /her
to compare the alternative A with lotteries L(p) corresponding to different prob-
abilities p. Here:

e when p is small, close to 0, the lottery L(p) is similar to the very bad
alternative A_ and is, thus, worse than A; we will denote this by A_ < A;
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e when p is close to 1, the lottery L(p) is similar to the very good alternative
A, and is, thus, better than A: A < L(p).

Also, the smaller the probability p of getting a very good alternative, the worse
the lottery L(p). Thus:

e if L(p) < A and p’ < p, then L(p') < A, and
o if A< L(p) and p < p/, then A < L(p’).

Thus, similarly to the monetary case, there exists a threshold value

sup{p: L(p) < A} =inf{p: A < L(p)};

we will denote this threshold value by u(A). This threshold value is known as
the wutility of the alternative A.

Similarly to the monetary case, for every ¢ > 0, we have L(u(A) —¢) <
A < L(u(A) + ¢). This is true for arbitrarily small €, in particular, for the
values e for which the difference in probabilities between u(A) — ¢, u(A4), and
u(A)+e is practically unnoticeable. So, we can conclude that from the practical
viewpoint, the alternative A is equivalent to the lottery L(u(A)). We will denote
this equivalence by A = L(u(A)).
Utility is defined modulo a linear transformation. The numerical value
of the utility u(A) depends not only on the alternative A, it also depends on
which pair (A_, A;) we select. What if we select a different pairs (A’ , A’,)
— e.g., a pair for which A_ < A” < A’ < A,? How will that change the
numerical value of utility?

If an alternative A has utility u/(A) with respect to the pair (A, A’,), this
means that this alternative is equivalent to the lottery L'(u’(A)), in which:

e we get A’, with probability u'(A), and

e we get A’ with the remaining probability 1 — u’(A).
Since A_ < A < Ay, we can find a utility value u(A” ) for which the alternative
A’ is equivalent to the lottery L(u(A”)), in which:

e we select A, with probability u(A” ), and

e we select A_ with probability 1 — u(A”).

Similarly, we have A’, = L(u(A!_)). Thus, the original alternative A is equiva-
lent to a two-stage lottery, in which:

o first, ))\(Ie ;)elect either A’, (with probability u'(A)) or A" (with probability
1—u/(A));

e then, we select either A, or A_ with probabilities depending on what we
selected on the first stage: if we selected A’, on the first stage, then we
select A} with probability u(A’,) and A_ with probability 1 —u(A’, ), and
if we selected A’ on the first stage, then we select A, with probability
u(A”) and A_ with probability 1 — u(A”).
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As a result of this two-stage lottery, we get either A, or A_, and the probability
of selecting A4 is equal to

/' (A) - u(AL) + (1 -/ (A)) - u(AL).

By definition, this probability is the utility u(A) of the alternative A with respect
to the pair (A_, Ay), thus

u(A) =u'(A) - u(A) + (1 —u'(A)) - u(AL).

The right-hand side is a linear expression in terms of u'(A). So, we conclude
that utilities corresponding to different pairs can be obtained from each other
by a linear transformation.

In other words, the numerical value of the utility is defined modulo a generic
linear transformation — just like the numerical value of time and temperature,
where the corresponding linear transformations mean selecting a different start-
ing point and/or a different measuring unit.

5 Utility Case: Usual Derivation of the Hurwicz
Criterion and the Limitations of This Deriva-
tion

Formulation of the problem. As as we have mentioned earlier, in many prac-
tical situations, we do not know the exact consequence of each action, and thus,
we do not know the exact value of the corresponding utility. Instead, for such
situations, we only know the interval [u, @] of possible utility values. According
to the general idea of utility, to describe the decision maker’s preferences for
such interval-valued situations, we must assign, to each such interval, an appro-
priate utility value. Similarly to the monetary case, we will denote this utility
value by f(u,u), and we will call the corresponding function a value function.
Clearly, we must have u < f(u,w) < @, and clearly, if u and/or T increase, the
interval-valued alternative becomes better — i.e., the value function should be
monotonic.
What are other natural properties of the value function?

We cannot reuse assumptions from the monetary case. We cannot
simply use the same properties as in the monetary case. For example, additivity
makes no sense:

e it makes perfect sense to add dollar amounts, but

e it makes no sense to add probabilities (and utilities, as we have explained,
are probabilities).

So, we need alternative assumptions.

Assumptions used in the usual derivation of the utility-case Hurwicz
formula. Since utility is defined modulo a general linear transformation, it
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makes sense to require that the formulas transforming the bounds u and @ into
an equivalent utility should remain the same if we linearly “re-scale” all utility
values. In particular:

e if we have f(u,u) = u, then after shifting all the utility values by ug we
should retain the same relation between the shifted utilities v’ = u + ug,
u =U+ug, and v =u+ug: f(v, @) =u;

e similarly, if we have f(u, %) = u, then after re-scaling all the utility values
by a factor ¢ > 0, we should retain the same relation between the shifted
utilities v/ = c-u, @' =c-w, and v =c-w: f(u', @) =’

In the shift case, if we substitute the values v’ = u + ug, W = u + ug, and
v =u+ug = f(u,u) + ug into the desired equality f(u',@') = u', we get the
requirement f(u + wo, % + ug) = f(u, W) + up. One can see that this is exactly
the property that we called shift-invariance.

In the re-scaling case, if we substitute the values v’ = ¢ u, @ = c- 7,
and v = c¢-u = ¢ f(u,u) into the desired equality f(uv/,u') = v/, we get the
requirement f(c-u,c @) = ¢- f(u,u). We will call this property scale-invariance.

Definition 4. We say that a value function f(u,u) is scale-invariant if for
every ¢ > 0 and for all u <, we have f(c-u,c-u) =c- f(u,u).

Proposition 4. For a value function f(u,u), the following two conditions are
equivalent to each other:

e the value function is monotonic, shift-invariant, and scale-invariant;

e the value function has the Hurwicz form.

Proof. It is easy to check that the Hurwicz formula is monotonic, shift-
invariant, and scale-invariant. Let us show that, vice versa, every monotonic
value function which is shift- and scale-invariant has the Hurwicz form.

Indeed, as in the proof of Proposition 1, let us denote « def £(0,1). For all
u < U, due to shift-invariance with ug = u, we have f(u,u) = u+ (0,7 — ).
Now, due to scale-invariance with ¢ = t—u, we get f(0,t—u) = (u—u)-f(0,1) =
(T—u)-a.

Thus, f(u,u) = u+ f(0,u—u) = u+ (W—wu)- o, which is exactly the Hurwicz
formula.

The proposition is proven.

Limitations. Shift-invariance is indeed reasonable, but scale-invariance is not
fully convincing. Yes, indeed, we can have different units for measuring utility
— just like we can use different units for measuring money, but it is not very
convincing to expect that people will make the same choices involving 100 US
dollars as in situations involving 100 Pesos (which at present, in 2020, represents
a 20 times smaller amount of money).

It is therefore desirable to replace scale-invariance with a more convincing
assumption.
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6 Utility Case: New, Hopefully More Convinc-
ing, Derivation of the Hurwicz Criterion

We cannot simply dismiss scale-invariance. We cannot simply dismiss
scale-invariance and keep only shift-invariance: we already considered this sce-
nario when discussing the monetary case, and we showed that in this case, there
are too many values functions satisfying these requirements.

So, we need additional assumptions — assumptions which are more convincing
that scale-invariance.

What we propose. What we propose is the above-described transitivity prop-
erty. The arguments in favor of this property apply verbatim to the utility case.
And we already know — from Proposition 2 — that if we require shift-invariance
and transitivity, then the only value functions we get are Hurwicz ones.

Thus, indeed, we get a new, (hopefully) more convincing derivation of the
Hurwicz criterion in the utility case as well.
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