
University of Texas at El Paso University of Texas at El Paso 

ScholarWorks@UTEP ScholarWorks@UTEP 

Departmental Technical Reports (CS) Computer Science 

3-2020 

Theoretical Explanation of Recent Empirically Successful Code Theoretical Explanation of Recent Empirically Successful Code 

Quality Metrics Quality Metrics 

Vladik Kreinovich 
The University of Texas at El Paso, vladik@utep.edu 

Omar A. Masmali 
The University of Texas at El Paso, oamasmali@miners.utep.edu 

Nguyen Hoang Phuong 
Thang Long University, nhphuong2008@gmail.com 

Omar Badreddin 
The University of Texas at El Paso, obbadreddin@utep.edu 

Follow this and additional works at: https://scholarworks.utep.edu/cs_techrep 

 Part of the Computer Sciences Commons 

Comments: 

Technical Report: UTEP-CS-20-21 

To appear in Journal of Advanced Computational Intelligence and Intelligent Informatics (JACIII) 

Recommended Citation Recommended Citation 
Kreinovich, Vladik; Masmali, Omar A.; Phuong, Nguyen Hoang; and Badreddin, Omar, "Theoretical 
Explanation of Recent Empirically Successful Code Quality Metrics" (2020). Departmental Technical 
Reports (CS). 1421. 
https://scholarworks.utep.edu/cs_techrep/1421 

This Article is brought to you for free and open access by the Computer Science at ScholarWorks@UTEP. It has 
been accepted for inclusion in Departmental Technical Reports (CS) by an authorized administrator of 
ScholarWorks@UTEP. For more information, please contact lweber@utep.edu. 

https://scholarworks.utep.edu/
https://scholarworks.utep.edu/cs_techrep
https://scholarworks.utep.edu/computer
https://scholarworks.utep.edu/cs_techrep?utm_source=scholarworks.utep.edu%2Fcs_techrep%2F1421&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/142?utm_source=scholarworks.utep.edu%2Fcs_techrep%2F1421&utm_medium=PDF&utm_campaign=PDFCoverPages
https://scholarworks.utep.edu/cs_techrep/1421?utm_source=scholarworks.utep.edu%2Fcs_techrep%2F1421&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:lweber@utep.edu


Theoretical Explanation of Recent Empirically

Successful Code Quality Metrics

Vladik Kreinovich1, Omar A. Masmali1,
Hoang Phuong Nguyen2, and Omar Badreddin1

1Department of Computer Science
University of Texas at El Paso

500 W. University
El Paso, TX 79968, USA

vladik@utep.edu, oamasmali@miners.utep.edu
obbadreddin@utep.edu

2Division Informatics, Math-Informatics Faculty
Thang Long University
Nghiem Xuan Yem Road

Hoang Mai District
Hanoi, Vietnam, nhphuong2008@gmail.com

Abstract

Millions of lines of code are written every day, and it is not practically
possible to perfectly thoroughly test all this code on all possible situations.
In practice, we need to be able to separate codes which are more probable
to contain bugs – and which thus need to be tested more thoroughly –
from codes which are less probable to contain flaws. Several numerical
characteristics – known as code quality metrics – have been proposed for
this separation. Recently, a new efficient class of code quality metrics
have been proposed, based on the idea to assign consequent integers to
different levels of complexity and vulnerability: we assign 1 to the simplest
level, 2 to the next simplest level, etc. The resulting numbers are then
combined – if needed, with appropriate weights. In this paper, we provide
a theoretical explanation for the above idea.

1 Formulation of the Problem

Need for code quality metrics. Computers are ubiquitous in our lives, com-
puters are a vital part of many systems, including systems which are critically
important – e.g., systems that control airplanes, systems that monitor patients
in hospitals’ emergency rooms, etc. In view of this importance, it is desirable
to make sure that all software is as reliable as possible. For this purpose, soft-

1



ware engineering is designing procedures and techniques that would increase
such a reliability, from recommendation on how to best design the program to
recommendations on testing.

There is a need to make sure that each piece of code and each software
system work perfectly on all possible situations. However, it is infeasible to test
each piece of code in all possible situations: millions of lines of code are written
every day, and many pieces of code are intended for use in multiple different
situations. It is therefore desirable to allocate more efforts into testing software
for which the probability of failure is higher – and correspondingly, somewhat
less effort in testing software for which the probability of failure is lower.

Techniques that help decide which software packages have higher probability
of failure and which has lower probability of failure are known as code quality
metrics.

Where code quality metrics come from. On the qualitative level, we know
– from common sense and from experience – what makes a method or a class
potentially less reliable. For example:

• the longer a code, the more probable it is that it may contain a bug,

• the more methods a class contains, the more probable that this class may
contain a problem,

• the more complex data types processed by the method, the more probable
it is that some of the operations may be faulty, etc.

There are known qualitative classifications of some of these criteria. For exam-
ple, with respect to processed data types:

• the simplest data types are integer, Boolean, and character;

• next simplest are real numbers, long-integer types, and strings;

• next in the hierarchy are arrays and tuples consisting of elements of pre-
viously mentioned types; and

• finally, the most complex are user-defined objects and arrays of complex
types.

Similarly, the probability of a possible fault increases with what is called the
visibility of the variable:

• the least vulnerability comes from variables marked as private; by defini-
tion of this marking, they can only be used by other methods from the
same class;

• second in vulnerability are variables marked as protected, they can also be
accessed by methods from several other classes; and

• the most vulnerable are variables marked as public, they can be, in prin-
ciple, accessed by any method from any class.

2



There are many other such qualitative lists.
To come up with an appropriate numerical code quality metric, it is desirable

to provide a numerical value to each item on each list, and then combine the
resulting numerical values into a single numerical characteristic.

Currently used code quality metrics are not perfect. Several code quality
metrics have been proposed; see, e.g., [3, 8] and references therein. To check how
good is a code quality metric, software engineers use several software packages
for which experts thoroughly analyzed all methods and all classes, and agreed on
which methods and classes are better written and which are not so well written
and are, thus, potentially more vulnerable.

When tested on these classes and methods, it turns out that many of the
proposed code quality metrics work reasonably well. However, of course, these
metrics are not perfect:

• sometimes, they mark a software as suspicious, while software engineering
experts consider this software practically flawless; while

• sometimes, they mark a software as perfect, while software engineering
experts see numerous faults.

Both problems are hindering our efforts:

• in the first case, if we follow the code quality metric’s recommendation,
we waste time and efforts on testing a perfectly good piece of code, while
this time and effort could be better used to deal with really suspicious
pieces of code;

• the second case is even more troublesome: if we follow the code quality
metric’s recommendation, we will not spend enough time and effort on
testing a potentially vulnerable piece of code, and, as a result, we may
miss an important mistake.

It is therefore desirable to come up with new code quality metrics, metrics that
would have fewer mismatches with expert estimates.

Recent empirically successful code quality metrics and formulation
of the problem. Recently, a new class of code quality metrics have been
proposed; see, e.g., [9].

One of the main ideas behind these metrics is to use sequential integers
to describe the above-mentioned qualitative characteristics. For example, with
respect to processed data types:

• the simplest data types such as integer, Boolean, and character, are as-
signed complexity 1;

• next simplest data types, such as real numbers, long-integer types, and
strings, are assigned complexity 2;

• arrays and tuples consisting of elements of previously mentioned types are
assigned complexity 3; and

3



• the most complex data types – user-defined objects and arrays of complex
types – are assigned complexity 4.

Similarly, depending on the variable’s vulnerability, we assign different numeri-
cal values:

• to variables marked as private we assign complexity 1;

• to variables marked as protected we assign complexity 2; and

• to variables marked as public, we assign complexity 3.

The resulting complexities are then either simply added – or combined with
appropriate weights.

An empirical analysis shows that the resulting metrics are indeed in better
accordance with the metric estimates. An important question is why.

• If this empirical success is largely accidental, so that there is no good
theoretical explanation for this success, then we should not expect that
this metric works well in other cases.

• On the other hand, if there a good theoretical explanation for the empirical
success, then we are much more confident that this metric will work in
other situations as well.

What we do in this paper. In this paper, we show that the main idea behind
the new code quality metrics – of assigning consequent integers to different
situations – has a reasonable theoretical explanation.

2 Main Idea Behind the New Empirically Suc-
cessful Code Quality Metrics: A Theoretical
Explanation

Let us reformulate the problem in general terms. In both above situa-
tions, we have several groups of alternatives sorted in the increase order of their
complexity:

• in the first case, we have 4 levels of complexity describing different data
types;

• in the second case, we have 3 levels of vulnerability describing different
options of variable’s visibility.

Let us denote the number of such groups (levels) by n. Then:

• for data types, n = 4, and

• for visibility options, we have n = 3.

4



We want to assign, to each level i, where i goes from 1 to n, a number ci, so
that higher levels will be described by larger numbers:

c1 < c2 < . . . < cn. (1)

Without losing generality, we can restrict ourselves to numbers from
the interval [0, 1]. In principle, we can use large numbers or small numbers ci.
However, since we will multiply these numbers by some weight anyway, it does
not matter how big or how small are the original numbers. What is important
is their relation to each other, e.g., their ratios, since these ratios do not change
if we multiply all the values ci by the same weight, i.e., go from the original
values ci to the new values w · ci for some weight w.

From this viewpoint, we can always apply an appropriate weight and make
sure that the resulting values are within the interval [0, 1]. So, without losing
generality, we can safely assume that all the values ci are within the interval
[0, 1], i.e., that we have

0 ≤ c1 < c2 < . . . < cn ≤ 1. (2)

Which values ci should we choose? In principle, we can have all possible
tuples c = (c1, . . . , cn), as long as the corresponding tuple satisfies the condi-
tion (2).

We have no reason to believe that some of these tuples are more probable
than others. So, it is reasonable to assume that all such tuples are equally
probable, i.e., in probabilistic terms, that we have a uniform distribution on
the set of such tuples. It should be mentioned that this argument – known
as Laplace Indeterminacy Principle – is widely used in statistics and in data
processing in general; see, e.g., [5].

Which of the possible tuples should we use? In general, in statistics, a
natural idea is to use the estimate for which the mean square deviation from
the actual (unknown) value is the smallest possible; this is the main idea behind
the usual least squares approach; see, e.g., [10].

From this viewpoint, a natural measure of the difference between the two tu-
ples c = (c1, . . . , cn) and c′ = (c′1, . . . , c

′
n) is the sum of the squares of differences

in coordinates
(c− c′)2

def
= (c1 − c′1)2 + . . .+ (cn − c′n)2,

i.e., in effect, the square of the usual Euclidean distance between the corre-
sponding n-dimensional vectors c and c′. Thus, we should select the vector
c = (c1, . . . , cn) for which the following expected value is the smallest possible:∫

(c− c)2 dµ =

∫
((c1 − c1)2 + . . .+ (cn − cn)2) dµ, (3)

where dµ means integration over the probability measure corresponding to the
uniform distribution – i.e., in effect, over the n-dimensional volume (since a

5



uniform distribution in n-dimensional space means that the probability is pro-
portional to volume, just like in a 1-D uniform distribution, probability is pro-
portional to the length).

So what are the resulting values ci. To find the minimum of the expres-
sion (3), we can differentiate this expression with respect to the unknown ci and
equate the derivative to 0. As a result, we get the equation

2

∫
(ci − ci) dµ = 0.

To solve this equation, we divide both sides by 2, and use the facts that the
integral of the difference is equal to the difference of the integrals, and that a
constant factor (in this case, ci) can be taken out of the integral sign. As a
result, we get the formula

ci ·
∫

dµ−
∫
ci dµ = 0.

Here,
∫
dµ is the overall probability, i.e., 1, thus,

ci =

∫
ci dµ.

In other words, ci is equal to the mean value of ci with respect to a uniform
distribution on the set of all the tuples c = (c1, . . . , cn) that satisfy the prop-
erty (2). This mean value is known (see, e.g., [1, 2, 4, 6, 7]), and it is equal
to

ci =
i

n+ 1
. (4)

So, we arrive at the following conclusion.

Conclusion. The best way to assign a numerical value to each level i is to use
the value

ci =
i

n+ 1
.

This is exactly what we wanted to explain. As we have mentioned ear-
lier, we are considering the values ci modulo multiplication by a weight. In
particular, if we take the weight w = n+ 1, we end up with the new values

w · ci = i,

i.e., exactly with the values that lead to the new empirically successful code
quality metric.

Acknowledgments

This work was supported in part by the US National Science Foundation grants
1623190 (A Model of Change for Preparing a New Generation for Professional
Practice in Computer Science) and HRD-1242122 (Cyber-ShARE Center of Ex-
cellence).

6



References

[1] M. Ahsanullah, V. B. Nevzorov, and M. Shakil, An Introduction to Order
Statistics, Atlantis Press, Paris, 2013.

[2] B. C. Arnold, N. Balakrishnan, and H. N. Nagaraja, A First Course in
Order Statistics, Society of Industrial and Applied Mathematics (SIAM),
Philadelphia, Pennsylvania, 2008.

[3] O. Badreddin, R. Khandoker, A. Forward, O. Masmali, and T. C. Leth-
bridge, “A decade of software design and modeling: A survey to uncover
trends of the practice”, Proceedings of the 21th ACM/IEEE International
Conference on Model Driven Engineering Languages and Systems MOD-
ELS’18, Copenhagen, Denmark, October 14–19, 2018, pp. 245–255.

[4] H. A. David and H. N. Nagaraja, Order Statistics, Wiley, New York, 2003.

[5] E. T. Jaynes and G. L. Bretthorst, Probability Theory: The Logic of Sci-
ence, Cambridge University Press, Cambridge, UK, 2003.

[6] O. Kosheleva, V. Kreinovich, J. Lorkowski, and M. Osegueda, “How to
transform partial order between degrees into numerical values”, Proceed-
ings of International IEEE Conference on Systems, Man, and Cybernetics
SMC’2016, Budapest, Hungary, October 9–12, 2016.

[7] O. Kosheleva, V. Kreinovich, M. Osegueda Escobar, and K. Kato, “Towards
the most robust way of assigning numerical degrees to ordered labels, with
possible applications to dark matter and dark energy”, Proceedings of the
2016 Annual Conference of the North American Fuzzy Information Pro-
cessing Society NAFIPS’2016, El Paso, Texas, October 31 – November 4,
2016.

[8] O. Masmali and O. Badreddin, “Model driven security: a systematic map-
ping study”, Journal of Software Engineering, 2019, Vol. 7, No. 2. pp. 30–
38.

[9] O. Masmali and O. Badreddin, “Towards a model-based fuzzy software
quality metrics”, Proceedings of the International Conference on Model-
Driven Engineering and Software Development MODELSWARD’2020, Val-
letta, Malta, February 25–27, 2020, Vol. 1, pp. 139—148.

[10] D. J. Sheskin, Handbook of Parametric and Nonparametric Statistical Pro-
cedures, Chapman and Hall/CRC, Boca Raton, Florida, 2011.

7


	Theoretical Explanation of Recent Empirically Successful Code Quality Metrics
	Recommended Citation

	tmp.1587574475.pdf.CXge9

