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Abstract

In many medical applications, we diagnose a disease and/or apply a
certain remedy if, e.g., two out of five conditions are satisfied. In the fuzzy
case, i.e., when we only have certain degrees of confidence that each of n
statement is satisfied, how do we estimate the degree of confidence that k
out of n conditions are satisfied? In principle, we can get this estimate if
we use the usual methodology of applying fuzzy techniques: we represent
the desired statement in terms of “and” and “or”, and use fuzzy analogues
of these logical operations. The problem with this approach is that for
large n, it requires too many computations. In this paper, we derive
the fastest-to-compute alternative formula. In this derivation, we use the
ideas from neural networks.

1 Formulation of the Problem

Need for fuzzy logic in medical applications. To diagnose a patient, to
come up with appropriate cure, it is often important to perform many tests.
Each tests results in numerous numerical values that describe the state of the
patient: even a routine blood test returns several pages of numbers. These num-
bers are important and need to be taken into account, but, of course, medical
doctors do not just operate based on these numbers, they also use their experi-
ence and intuition – if they operated by numbers only, it would have been easy
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to replace them with a computer program.
Some medical doctors have more experience and a better intuition, they are

more successful in curing the corresponding diseases. Other medical doctors
have not yet acquired this experience. It is therefore desirable to incorporate
the experience of top medical doctors into a computer-based system so as to
help beginning medical doctors make good decisions.

Most top medical doctors are willing and eager to share their knowledge.
The problem is that this knowledge does not usually come in terms of numbers
– which would then be easy to incorporate in a computer system, this knowledge
usually comes in terms of words from natural language, words which are not
easy for a computer to understand. For example, a medical doctor may say
that a certain treatment is appropriate when the fever is high – without giving
a precise definition of what “high” means.

This situation – and similar situations with experts in other fields – moti-
vated Lotfi Zadeh to come up with fuzzy logic; see, e.g., [2, 3, 8, 10, 11, 12]. In
this approach, for every statement in which an expert is not 100% confident, the
expert supplies his/her degree of confidence in this statement – estimated, e.g.,
by a number on a scale from 0 to 10. Since different experts may use different
scale, a reasonable idea is to make the corresponding numbers compatible by
reducing them to the interval [0, 1]; e.g.:

• 7 on a 0-to-10 scale will be represented by a number 7/10 = 0.7,

• 3 on a 0-to-5 scale will be represented by a number 3/5 = 0.6, etc.

In this case:

• if we are absolutely confident that a statement is true, then our degree of
confidence will be 1, and

• if we are absolutely confident that a statement is not true, then our degree
of confidence will be 0.

Logical operations in fuzzy logic and how we use them. In medicine, de-
cisions are rarely based on one simple opinion or one simple rule. Usually, several
expert statements S1, . . . , Sn need to be taken into account. In such a case, the
practitioner’s confidence in this decision is the confidence that all these state-
ments are true, i.e., equivalently, that the combined statement S1 & . . . &Sn is
true.

In the ideal world, we should elicit the corresponding degrees of confidence
from the experts, but the problem is that based on N statement, we can make
2N − 1 combinations corresponding to all possible non-empty subsets of the
set {S1, . . . , SN}, and for a reasonable large N , like several dozen, this number
is astronomical. There is no way to ask the expert to estimate the degree of
confidence in billions of possible combinations.

Since we cannot elicit the degree of confidence in a complex statement like
A&B from the expert, we must be able to evaluate it based on the known
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degrees of confidence a and b in the statements A and B. An algorithm f&(a, b)
that transforms the degrees of confidence a and b into an estimate for a degree
of confidence in A&B is known as an “and”-operation, or, for historic reasons,
a t-norm.

There are many possible “and”-operations. Often, a reasonable choice is to
follow Zadeh himself and select the simplest possible “and”-operation

f&(a, b) = min(a, b).

Similarly, to estimate the degree of confidence in statements of the type
A ∨ B, we need to have an “or”-operation f∨(a, b), and for the negation ¬A, a
negation-operation f¬(a).

Sometimes, we may want to describe the degree of confidence in a more
complex statement, e.g., a statement of the type (S1 &S2 &S3)∨ (S4 &S5) that
corresponds, e.g., to the case when we have two different situations S1 &S2 &S3

and S4 &S5 under which a given medicine is recommended. In this case, a
reasonable idea is:

• to first apply “and”-operations and get the degrees of confidence for
S1 &S2 &S3 and S4 &S5, and then

• apply an “or”-operation to combine these two estimates.

In general, if we have a complex statement, a usual practice is to represent
this complex statement in an equivalent form that uses “and”, “or”, and “not”,
and then sequentially apply the corresponding operations of fuzzy logic.

How can we describe conditions like 2-out-of-5: a challenge. Medicine is
filled with statement of the “2-out-of-5” type: if a patient has 2 out of the given
5 symptoms, this means that, most probably, the patient has the corresponding
disease. It could be 8 out of 10 etc., but it is a known fact that for many
diseases, some of the symptoms may not occur in some patients.

Since such statements are ubiquitous, it is desirable to be able to describe
them in fuzzy logic; this need was emphasized, e.g., in [1, 4, 13]. The problem
is that for such statements, the above-described usual fuzzy techniques do not
work well.

Indeed, in principle, if we have five statements S1, . . . , S5, then we can natu-
rally describe the 2-out-of-5 statement in terms of “and” and “or”, by explicitly
listing all possible pairs of statements, i.e., as

(S1 &S2) ∨ (S1 &S3) ∨ (S1 &S4) ∨ (S1 &S5) ∨ (S2 &S3)∨

(S3 &S4) ∨ (S2 &S5) ∨ (S3 &S4) ∨ (S3 &S5) ∨ (S4 &S5).

This statement is long and difficult-to-compute, but still doable. However, when
we get more symptoms, the resulting “and”-“or”-statement becomes astronom-
ically large, not practically doable.

We need a simpler way to estimate our degree of confidence in such state-
ments. This is what we will do in this paper.
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2 Analysis of the Problem

What do we want. We want to have, for each k < n, a function
fk,n(a1, . . . , an) that would transform our degrees of confidence ai in individual
statements Si into our estimate for the degree of confidence that k out of n
statements are true.

When we are absolutely sure about each statement, i.e., when each value ai
is equal to 0 or 1, then we should have:

• fk,n(a1, . . . , an) = 1 if at least k values ai are equal to 1, and

• fk,n(a1, . . . , an) = 0 if fewer than k values ai are equal to 1.

Also, the very fact that we are simply counting the conditions – and not
taking some of them with a larger weight – means that we treat all n condi-
tions as equally important. Thus, it makes sense to require that the value of
the desired function will not change if we simply change the order of values.
In precise terms, for any permutation π : {1, . . . , n} → {1, . . . , n} and for all
possible values a1, . . . , an, we should have

fk,n(aπ(1), . . . , aπ(n)) = fk,n(a1, . . . , an).

If our confidence in one (or more) of the statements increases, then clearly our
degree of confidence in the desired statement – that at least k of the statements
are true – should also increase (or at least not decrease). Thus, the desired
function fk,n(a1, . . . , an) should be monotonic in all ai:

if ai ≤ a′i for all i, then fk,n(a1, . . . , an) ≤ fk,n(a′1, . . . , a
′
n).

What we mean by simplicity. To describe the desired “simple” operation,
let us first clarify what we mean by simplicity. The problem with the traditional
approach to such statement is that they take too long to compute – sometimes,
unrealistically long. So, when we talk about simplicity, we mean the need to
make computations faster.

When we estimate the computation time of an algorithm, we need to take
into account that nowadays, even the cheapest PC has several processors work-
ing in parallel. Thus, it makes sense to count the time needed to compute the
corresponding value in parallel.

So, we are looking for parallel algorithms in which we have a sequence of
“layers” – computational blocks working in parallel. The fewer layers we have
and the faster the computations on each layer, the faster the overall computa-
tions. So, to speed up the overall computations, we need to have the smallest
possible number of layers and the fastest-to-compute blocks.

Which blocks are the fastest to compute? In mathematical terms, each
block computes a function of its inputs. Functions can be linear and nonlinear.

4



Of course, linear functions are faster to compute, so they will be our first example
of fast-to-compute blocks. We will denote such blocks by L, short of “linear”.

In many practical situations, it is not sufficient to have linear functions –
and later on, we will show that this is exactly one of such situations. Thus, we
also need some non-linear blocks. Different non-linear blocks require different
computation time. Usually, the more inputs we have, the longer it takes to
process them. The fastest-to-compute are the blocks that process only one
input. So, in addition to linear blocks, we will also consider non-linear blocks
that take one input a and compute some non-linear function s(a) of this input.
These blocks will be denoted by NL, short of “non-linear”.

Can we have just one layer? If we have only one layer, then this layer must
be formed either by NL blocks or by L blocks. We cannot have NL blocks,
because they compute a function of one variable, and we need a function of n
variables.

Can we have L blocks – i.e., can the desired function be linear? In other
words, can we have a function of the type

fk,n(a1, . . . , an) = w0 +

n∑
i=1

wi · ai

for some coefficients wi? Not really. Indeed, if k values ai are equal to 1 and
the result are equal to 0, then we should get the value 1:

fk,n(1, . . . , 1 (k times), 0, . . . , 0) = w0 +

k∑
i=1

wi = 1.

On the other hand, if we have k+ 1 values equal to 1 and all the other equal to
0, then we should also get the value 1:

fk,n(1, . . . , 1 (k + 1 times), 0, . . . , 0) = w0 +

k+1∑
i=1

wi = 1.

Subtracting these two equalities, we conclude that

k+1∑
i=1

wi −
k∑
i=1

wi = wk+1 = 0.

Similarly, we can prove that all the weights w1, . . . , wn should be equal to 0 –
thus, the function should not depend on the inputs at all and be a constant,
which cannot be, since:

• for some inputs, the desired function is equal to 1, while

• for other inputs, the desired function is equal to 0.
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So, we cannot have one layer, we need at least two layers.

We cannot have L-L or NL-NL configurations. It is easy to see that we
cannot have two consequent layers of the same type. Indeed, if we have two
consequent linear layers, this means that:

• first, we apply some linear transformation to the inputs, and then,

• we apply a second linear transformation to the results of the first trans-
formation.

It is well known that a composition of two linear transformations is linear – and
we already know that linear functions are not sufficient.

Similarly, if we have two NL layers, then:

• on the first layer, each input ai is transformed into a value bi = si(ai) for
some function si(a) of one variable, and then,

• on the second layer, we apply a non-linear function ti(a) to the results bi
of the first layer.

As a result, we get ti(bi) = ti(si(ai)), which is equivalent to applying a single
function ti(si(a)) to the inputs ai. And we already know that this way, we
cannot build the desired function.

So, if we have two layers, then these layers must be different: either NL-L
or L-NL. Let us analyze these two cases one by one.

Can we have NL-L? In this case:

• first, we apply some non-linear function si(a) to each input ai, and then,

• we form a linear combination of the results si(ai).

In other words, we will have

fk,n(a1, . . . , an) = w0 +

n∑
i=1

wi · si(ai)

for some coefficients wi.
In this case, if k values ai are equal to 1 and all other values ai are equal to

0, then we should get the value 1:

fk,n(1, . . . , 1 (k times), 0, . . . , 0) = w0 +

k∑
i=1

wi · si(1) +

n∑
j=k+1

wj · si(0) = 1.

On the other hand, if we have k+ 1 values equal to 1 and all the other equal to
0, then we should also get the value 1:

fk,n(1, . . . , 1 (k + 1 times), 0, . . . , 0) = w0 +

k+1∑
i=1

wi · si(1) +

n∑
j=k+2

wj · si(0) = 1.
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Subtracting these two equalities, we conclude that sk+1(1) − sk+1(0) = 0, i.e.,
that sk+1(1) = sk+1(0).

Similarly, we can prove that all i from 1 to n, we will have si(1) = si(0). So,
if each ai is equal to 0 or to 1, the value

fk,n(a1, . . . , an) = w0 +

n∑
i=1

wi · si(ai)

should be the same, no matter how many of these values are 0s and how many
are 1s. But this cannot be, since:

• for some combinations of 0 and 1 inputs, the desired function is equal to 1,
while

• for other combinations of 0 and 1 inputs, the desired function is equal to 0.

So, we cannot have a NL-L configuration either. The only remaining case is the
case of L-NL configuration.

Can we have L-NL? In this case:

• we first form a linear combination of the inputs w0 +
n∑
i=1

wi · ai, and then

• we apply a non-linear functions s(a) to this linear combination, resulting in

fk,n(a1, . . . , an) = s

(
w0 +

n∑
i=1

wi · ai

)
.

The requirement that the value should not change under any permutation means
that all the weights w1, . . . , wn must be equal to each other: w1 = . . . = wn. If
we denote the common value of the coefficients wi by w, then the above formula
takes the form

fk,n(a1, . . . , an) = s

(
w0 +

n∑
i=1

w · ai

)
= s

(
w0 + w ·

n∑
i=1

ai

)
.

Instead of a function s(a), we can use a different function t(a)
def
= s(w0 +w · a).

In terms of this new function, the above expression gets the following simplified
form:

fk,n(a1, . . . , an) = t

(
n∑
i=1

ai

)
.

What can we conclude about the function t(a)? We want the value
fk,n(a1, . . . , an) to be between 0 and 1, so we should have t(a) ∈ [0, 1] for
all a. Monotonicity implies that the function t(a) is monotonic: if a ≤ a′, then
t(a) ≤ t(a′). Also:

7



• If at least k values ai are equal to 1, then we must get 1. In this case, the

sum
n∑
i=1

ai is equal to k or larger. So, for any value a ≥ k we should have

t(a) = 1.

• On the other hand, if fewer than k values ai are equal to 1, and other

values are equal to 0, then we should get 0. In this case, the sum
n∑
i=1

ai is

equal to k−1 (or to a smaller number). Thus, we should have t(k−1) = 0
– and, by monotonicity, we should have t(a) = 0 for all a ≤ k − 1.

Now, we are ready to present our final result.

3 Main Result: The Simplest Possible Fuzzy
Analogue of the 2-out-of-5-Type Operations

General conclusion. Suppose that we know the degrees of confidence
a1, . . . , an in n statements S1, . . . , Sn, and for some integer k < n, we want
to estimate our degree of confidence fk,n(a1, . . . , an) that at least k of these
statements are true. In this case, we should take

fk,n(a1, . . . , an) = t

(
n∑
i=1

ai

)
,

where:

• for a ≤ k − 1, we have t(a) = 0;

• for a ≥ k, we have t(a) = 1, and

• for a between k − 1 and k, the function t(a) increases from 0 to 1.

Which of these operations should we choose? All we need to do is to
choose the values of the function t(a) for the interval [k − 1, k]; for all other
values, its values are determined already. As we have mentioned earlier, the
simplest possible functions are linear, so we should take t(a) = c0 + c1 · a. From
the conditions that t(k − 1) = 0 and t(k) = 1, we conclude that c0 = −(k − 1)
and c1 = 1. Thus, on this interval, we should take t(a) = a− (k− 1). Thus, we
arrive at the following operation fk,n(a1, . . . , an):

• when
k∑
i=1

ai ≤ k − 1, we have fk,n(a1, . . . , an) = 0;

• when k − 1 ≤
k∑
i=1

ai ≤ k, we have fk,n(a1, . . . , an) =
n∑
i=1

ai − (k − 1); and
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• when k ≤
k∑
i=1

ai, we have fk,n(a1, . . . , an) = 1.

These three cases can be covered by a single formula

fk,n(a1, . . . , an) = min

[
max

(
0,

n∑
i=1

ai − (k − 1)

)
, 1

]
.

Comment. It is worth mentioning that for k = n, we get the exact same
expression as when we repeatedly apply the “and”-operation

f&(a, b) = max(a+ b− 1, 0)

to the values ai:

• first, we compute the estimate a12 for the degree of confidence in

A12
def
= A1 &A2

as a12 = f&(a1, a2);

• then, we compute the estimate a123 for the degree of confidence in

A123
def
= A1 &A2 &A3 ≡ A12 &A3

as a123 = f&(a12, a3),

• . . . ,

• finally, we compute the estimate a1...n for the degree of confidence in

A1...n
def
= A1 & . . . &An ≡ A1...n−1 &An

as a123 = f&(a1...n−1, an).

Why neural networks? All this may sound reasonable, but why do we men-
tion neural approach in the title? The explanation is simple: the same argu-
ments have been used to explain the success of traditional neural networks; see,
e.g., [5, 6, 7]. The main difference is that in a neural network, we want to
be able to approximate any function, in which case we cannot have a 2-layer
arrangement, the simplest we get is a 3-layer arrangement L-NL-L:

• first, we apply some linear transformations to the inputs x1, . . . , xn, re-

sulting in values zk = wk0 +
n∑
i=1

wki · xi;

• then, we apply a non-linear transformation to zk, resulting in yk = sk(zk),
and
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• finally, we apply a linear transformation to the results yk, getting

y =

K∑
k=1

Wk · yk +W0,

where K is the overall number of neurons on the first (L) layer.

As a result, we get the usual formula describing how, for a traditional neural
network, its output y depends on the inputs x1, . . . , xn:

y =

K∑
k=1

Wk · sk

(
wk0 +

n∑
i=1

wki · xi

)
+W0.

Other possible applications of this idea. We can use the same idea to
describe how to generalize the number of elements in a set (also known as the
set’s cardinality) to fuzzy sets, in which we have n elements with degree of
membership a1, . . . , an. In this case, one linear layer is sufficient, and, by taking
into account that when all ai are 0 or 1, we should get the actual cardinality,

we get Zadeh’s formula
n∑
i=1

ai.
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