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Abstract

In the last decades, several papers have shown that quantum tech-
niques can be successful in describing not only events in the micro-scale
physical world – for which they were originally invented – but also in
describing social phenomena, e.g., different economic processes. In our
previous paper, we provide an explanation for this somewhat surprising
successes. In this paper, we extend this explanation and show that quan-
tum (and more general) techniques can also be used to model research
collaboration.

1 Formulation of the Problem

What is the problem. It is well known that when researchers collaborate,
their productivity usually increases: together, they generate more results and
more applications than when they work on their own. Sometimes, this increase
is significant, sometimes, it is small, and sometimes, the two people simply do
not match, and their attempts to collaborate turn out to be counter-productive.
To enhance productivity, it is therefore desirable to predict how well a group of
researchers can work together. For this prediction, we can use the experience of
their past collaboration with each others and with other researchers. To make
such a prediction, we need a good model of such collaboration efficiency.

The existing model do not always provide a good prediction, so new models
are needed.
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How can we approach this problem. We need a quantitative model to
describe a social phenomenon. In general, quantitative methods appeared in
social sciences much later than in natural science – such as physics. As a re-
sult, from the mathematical viewpoint, we can claim that quantitative models
in social sciences are “behind” physics models. For example, stochastic differ-
ential equations have been, in effect, used in physics for many decades – e.g., to
describe the Brownian motion – while in social sciences, such models appeared
only a few decades ago, to predict the cost of financial derivatives.

From this viewpoint, to make social models more adequate, a natural idea is
to try to use mathematics behind more recent physics models. One formalism
that is been actively used in physics is the formalism of quantum mechanics. It is
thus reasonable to try to use quantum techniques to describe social phenomena.
This idea has been indeed successfully tried; see, e.g., [1, 3, 4, 10, 11, 12] and
references therein.

At first glance, these successes may sound accidental – after all, quantum
phenomena in physics are very different from social phenomena. However, as
we have shown in [12], there is a solid explanation behind these successes –
namely, a detailed stochastic analysis of the corresponding social phenomena
shows that quantum-type formulas indeed appear as a reasonable first approx-
imation to these phenomena. That paper also provides formulas for – possible
more accurate – next approximations.

What we do in this paper. In this paper, we extend the analysis from [12]
to the collaboration phenomenon. Namely, we show that this analysis leads, in
the first approximation, to a quantum-type model of collaboration phenomena.
We also provide ideas for next (post-quantum) approximations.

Comment. In this paper, we focus on research collaboration, since the results
of this type of collaboration can be naturally quantified. However, we believe
that similar techniques can be useful in describing other types of collaboration
as well – e.g., between musicians in an orchestra or between athletes in a sports
team, provided that we (find and) use an appropriate numerical measure for the
successfulness of such collaboration.

2 Analysis of the Problem

Stochastic character of research collaboration. Research activity is a
difficult-to-predict phenomenon, probably the hardest-to-predict: if it was easy
to predict the results, there would be no need for creative collaboration. The
results of a creative process depends on many difficult-to-predict factors: an
idea comes to mind, an article happens to appear in a journal that deals with a
similar problem, a new analogy suddenly pops into mind. All these factors are
largely random.

Thus, from the mathematical viewpoint, a person’s creative activity can be
described as a random process depending on many independent factors.
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None of these factors is dominant: in some cases, a new paper prompted the
insight; in other cases, it was some piece of art – for example, Einstein famously
said that Dostoyevsky inspired him even more than Gauss. We can therefore
conclude that the individual’s research productivity is the result of a joint effect
of many relatively small independent factors.

It is known that, under reasonable assumptions, such a joint effect is reason-
ably well described by a Gaussian (normal) distribution. To be more precise,
the corresponding Central Limit Theorem (see, e.g., [9]) states that when the
number N of such small factors tends to infinity, the probability distribution
of their summary effect tends to Gaussian – which means exactly that if N is
large, the corresponding probability distribution is close to Gaussian.

This description applies both to the state xi of each researcher i, and to the
vector x = (x1, . . . , xn) describing the state of each of the researchers from a
given group. So, we can conclude that the state of all the researchers can be
described by a multi-D Gaussian process. If instead of the original state, we
consider the deviations from the original state – the only thing that matters in
research – we can conclude that the mean value of this newly considered state
is 0.

Vector descriptions. Some factors affecting productivity are individual to
each researcher, others may be common to several researchers. As a result, the
corresponding random variables are correlated.

It is known that a generic n-dimensional multi-D Gaussian distribution with
0 mean can be described as a linear combination of n independent standard
Gaussian random variables, with 0 mean and standard deviation 1. In other
words, each random variable xi can be described as xi = ai1 ·e(1)+ . . .+ain ·e(n)
for some real numbers ai1, . . . , ain, where e(i) are independent Gaussian variables
for which the mean E

[
e(i)
]

is equal to 0 and the standard deviation σ
[
e(i)
]

is
equal to 1.

Thus, the research activity of each individual i can be described by an n-
dimensional vector ai = (ai1, . . . , ain). The overall productivity of a person can
be estimated as a mean-square value of the corresponding deviation, i.e., since
E[xi] = 0, as Vi = E[x2i ]. From the above formula for xi, we can conclude that

Vi = ‖ai‖2
def
=

n∑
j=1

a2ij .

Need for an approximate description. For large n, we need to represent
each researcher by a corresponding n-dimensional vector. Science is a collec-
tive enterprise, involving thousands of people. So, to represent each researcher
exactly, we would need to describe thousands of parameters. All these parame-
ters need to be determined experimentally, but usually, we do not have enough
information about each individual researcher to find all these parameters.

So, realistically, we have to ignore some of the original parameters. Thus, a
natural idea is to select some number k � n and describe each researchers by a
smaller-dimensional (namely, k-dimensional) vector Ai = (Ai1, . . . , Aik).
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Quantum description as a particular case of a vector description. In
particular, for k = 2, each researcher i is characterized by a 2-D Vector Ai =
(Ai1, Ai2), and the researcher’s productivity is characterized by the value

Vi = A2
i1 +A2

i2.

One of the possible algebraic interpretations of a 2-D space is as a space of
all complex numbers. Thus, it is natural to characterize each researcher by a

complex number Ci = Ai1 + i ·Ai2, where i
def
=
√
−1. In this case, Vi = |Ci|2.

From the mathematical viewpoint, this is exactly what quantum descriptions
are about – using complex numbers to describe the states, with the square
of the absolute values of the corresponding quantum numbers to describe the
observable quantity (in quantum case, probability of an event).

Need to describe collaboration. So far, we have described the state (and
the productivity) of an individual researcher. When some of the researchers
work together, their state and their productivity changes. In general, if we have
m researchers, we can have all possible groups working together, i.e., all possible
non-empty subsets S ⊆ {1, . . . ,m}.

Suppose that we know the states A1, . . . , Ar of all the researchers. Based on
these states, we can estimate the productivity ‖Ai‖2 of each researcher i.

We would like to predict the state AS of all possible groups S – and thus,
predict the productivity ‖AS‖2 of each such group.

How can we describe collaboration. Let us start with an informal de-
scription. Each group S can be characterized by its characteristic function χS ,
i.e., by assigning, to each researcher i, a value χS(i) which is equal to 1 if
the researcher i is a member of this group and 0 if not. In there terms, the
desired state AS is a function of n binary (0-or-1) variables χS(1), . . . , χS(n):
AS = F (χS(1), . . . , χS(m)).

In many application areas, the dependencies f(x1, . . . , xm) are smooth, so
we can expand them in Taylor series

f(x1, . . . , xm) = a0 +

m∑
i=1

ai · xi +

m∑
i1,i2=1

ai1i2 · xi1 · xi2 + . . . , (1)

and, if needed, approximate this dependence by keeping only the few first terms
in this expansion. In many cases, already the linear approximation

f(x1, . . . , xm) = a0 +

m∑
i=1

ai · xi (2)

works reasonably well; see, e.g., [2].
In our case, the variables are discrete, so we cannot talk about smooth

dependence. However, it turns out that a similar formula (1) is applicable in
this case as well: namely, every function of m binary variables can be described
by a similar formula; see, e.g., [5, 6, 7, 8]. To be more precise, for binary
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variables, the square of each variable coincides with its original value x2i = xi,
so it is sufficient to only consider coefficients ai1...id in which the indices do not
repeat. Thus, we get a form

f(x1, . . . , xm) = a0 +

m∑
i=1

ai · xi +
∑
i<i′

ai1i2 · xi1 · xi2+

∑
i1<i2<i3

ai1i2i3 · xi1 · xi2 · xi3 + . . . (3)

The transformation that maps each function of n binary variables into the corre-
sponding coefficients a0, ai, etc., is known as the Möbius transform for partially
ordered sets; see, e.g., [8].

This dependence holds for each component ASj of the desired state vector
AS = (AS1, . . . , ASn). In this case, xi = χS(i), and the corresponding product
χS(i1) · . . . · χS(id) is different from 0 if and only if all the researchers i1, . . . , id
belong to the group S, i.e., if and only if {i1, . . . , id} ⊆ S. In this case, the
product χS(i1) · . . . · χS(id) is equal to 1. So, for the component ASj , the
formula (3) takes the following form:

ASj = a0j +
∑
i∈S

aij +
∑

i1,i2:{i1,i2}⊆S

ai1i2j +
∑

i1,i2,i3:{i1,i2,i3}⊆S

ai1i2i3j + . . . (4)

The case S = ∅ means that no one is doing anything. In this case, the pro-
ductivity is 0, so we should have ASj = 0. For S = ∅, the formula (4) turns
into ASj = a0j , so we conclude that a0j = 0. Thus, the formula (4) takes a
simplified form

ASj =
∑
i∈S

aij +
∑

i1,i2:{i1,i2}⊆S

ai1i2j +
∑

i1,i2,i3:{i1,i2,i3}⊆S

ai1i2i3j + . . . (5)

What if we have a researcher working on his/her own? In this case, S = {i},
and the right-hand side of the formula (5) turns into aij . On the other hand, in
this case, ASj is the j-th component Aij of the vector Ai describing the state of
the i-th researcher. Thus, we conclude that aij = Aij and so, the formula (5)
takes the form

ASj =
∑
i∈S

Aij +
∑

i1,i2:{i1,i2}⊆S

ai1i2j +
∑

i1,i2,i3:{i1,i2,i3}⊆S

ai1i2i3j + . . . (6)

We can describe this in vector terms, if we introduce vectors

Ai1...id
def
= (ai1...id1, . . . , ai1...idk);

then, the formula (6) takes the form:

AS =
∑
i∈S

Ai +
∑

i1,i2:{i1,i2}⊆S

Ai1i2 +
∑

i1,i2,i3:{i1,i2,i3}⊆S

Ai1i2i3 + . . . (7)
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In particular, in the first approximation, when we only keep linear terms, we
get

ASj =
∑
i∈S

Aij , (8)

i.e., in terms of vectors,

AS =
∑
i∈S

Ai. (9)

In the 2-D case, if we describe 2-D vectors Ai, Ai1i2 , . . . , and AS by complex
numbers Ci, Ci1i2 , . . . , and CS , we get

CS =
∑
i∈S

Ci +
∑

i1,i2:{i1,i2}⊆S

Ci1i2 +
∑

i1,i2,i3:{i1,i2,i3}⊆S

Ci1i2i3 + . . . (10)

In the first approximation, when we only keep linear terms, we get:

CS =
∑
i∈S

Ci. (11)

Thus, we arrive at the following model for describing research collaboration.

3 Resulting Model and Its Analysis

Resulting model: general case. To describe research collaboration, we need
to select two parameters:

• the dimension k of the vectors describing the state of each research (and
each group), and

• the order d of the terms that we use to describe collaboration.

The larger k and the larger d, the more accurate the description.
In this model, the state of each researcher is described by a k-dimensional

vector Ai = (Ai1, . . . , Aik). In these terms, the productivity Vi of an individual
researcher is equal to Vi = ‖Ai‖2, where, for each vector v = (v1, . . . , vk), the

value ‖v‖ def
=
√
v21 + . . .+ v2k denotes its length.

In particular, when k = 2, we can describe this state Ai = (Ai1, Ai2) as a
complex number Ci = Ai1 +i ·Ai2. In terms of this complex number, the length
of the vector Ai is then equal to |Ci|2.

For each group S of collaborating researchers, the vector AS that describes
the state of this group has the form:

AS =
∑
i∈S

Ai +
∑

i1,i2:{i1,i2}⊆S

Ai1i2 + . . .+
∑

i1,...,id:{i1,...,id}⊆S

Ai1...id , (12)

for appropriate auxiliary vectors Ai1i2 , . . . , Ai1...id . The productivity VS of the
group S is equal to ‖AS‖2.
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In particular, in the complex-valued case k = 2, we get

CS =
∑
i∈S

Ci +
∑

i1,i2:{i1,i2}⊆S

Ci1i2 + . . .+
∑

i1,...,id:{i1,...,id}⊆S

Ci1...id , (13)

and the productivity is equal to |CS |2.

It is necessary to select small k and d. The larger the values of k and
n, the more accurate the resulting model – but, on the other hand, the more
parameters we will need to describe this model, and we usually do not have
enough observations to determine too many parameters. Thus, we need to
concentrate on models with small k and d, for which the number of parameters
is still reasonable.

Let us start with the smallest possible values, and, if the resulting oversim-
plified model is not too realistic, let us see how to increase k or d to make the
model more realistic while keeping the number of parameters reasonable.

What is the simplest case: description and analysis. The simplest case
is when we select the smallest possible values k = 1 and d = 1. In this case, the
state of each researcher i is described by a single number Ai, with productivity
Vi = |Ai|2, the state AS of a group S is equal to the sum AS =

∑
i∈S

Ai, and the

productivity of the group is equal to |Vi|2.
In particular, for a group S = {1, 2} consisting of two researchers, we have

VS = |A1 +A2|2. Here, in terms of the productivity Vi, the state Ai of the i-th
researcher has the form Ai = ±

√
Vi, so VS = | ±

√
V1 ±

√
V2|2. Depending on

the signs of Ai, we have two possible options:

• if both states A1 and A2 have the same sign, then

VS = (
√
V1 +

√
V2)2 = V1 + V2 + 2

√
V1 ·

√
V2;

• if the states A1 and A2 have different signs, then

VS = (
√
V1 −

√
V2)2 = V1 + V2 − 2

√
V1 ·

√
V2.

Thus, in this simplified model, we capture two cases:

• when the researchers most successfully collaborate, and

• when the researchers are so incompatible with each other that their overall
productivity as a group is smaller than the productivity of one of them.

Limitations of the simplest model and need for a more complex one.
In reality, in addition to these two extreme cases, we have the whole spectrum of
possible collaboration success. To capture this spectrum, we need to consider a
more adequate model, i.e., we need to either increase k or increase d (or increase
both).

Which is the next simplest model? The next simplest model is when we:
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• either increase k by one, leaving d unchanged, or

• or increase d by one, leaving k unchanged.

In the first case, when we take k = 2 and d = 1, to describe the situation
of m possibly collaborating researchers, we need to know the values of m 2-
dimensional vectors. So, in this case, overall, we need 2m numerical parameters.

In the second case, when we take k = 1 and d = 2, we need to describe

m numbers Ci corresponding to linear order terms, and
m · (m− 1)

2
values

Ci1i2 corresponding to second order terms in the formula (10) – exactly as
many as there are pairs (i1, i2) with i1 < i2. So, in this case, overall, we need

m+
m · (m− 1)

2
=
m · (m+ 1)

2
parameters.

The second number of parameters is larger if
m · (m+ 1)

2
> 2m, i.e., when

m+ 1

2
> 2, i.e., when m + 1 > 4 and m > 3. So, for each group consisting of

at least 4 researchers, the first model (with k = 2 and d = 1) requires fewer
parameters and is, thus, much simpler. Because of this, in the following text,
we will consider the model with k = 2 and d = 1.

Let us consider this next simplest model. In this next simplest model,
each participant is described by a 2-D vector – i.e., equivalently, by a complex
number Ci. The productivity of each group S is equal to PS = |CS |2, where

CS =
∑
i∈S

Ci. (14)

Thus, we have

PS = |CS |2 =
∑
i∈S
|Ci|2 + 2

∑
i1<i2

|Ci| · |Cj | · cos(αij), (15)

where αij is the angle between the 2-D vectors Ci and Cj . In particular, for
each participant i, his/her productivity Pi is equal to |Ci|2. So, in terms of
individual productivity values, |Ci| =

√
Vi and the formula (15) takes the form:

PS =
∑
i∈S

Pi + 2
∑
i1<i2

√
Pi ·

√
Pj · cos(αij). (16)

Our preliminary analysis shows that this model describes the collaboration
between folks reasonably well – at least on the qualitative level. When the
cosine is positive, the group’s productivity is much larger than the combined
productivity of all its members. For example, if all the angles are 0s, and all the
cosines are equal to 1, then for a group of m members its productivity grows as
m2, while the sum of productivity values grows only as m.

On the other hand, if the cosines are negative, the overall productivity is
smaller than it would be if everyone worked on their own. In this case, re-
searchers are clearly not compatible, and collaboration does not make sense.
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Possible future work. It would be nice to compare, on a quantitative level,
how well collaboration results can be described by this model. It this model
turns out to be adequate, we can then use it to decide how to group people into
collaborating teams – so as the overall productivity of all these teams is the
largest possible.

Of course, even if the model works well, it will be only approximate – since
practically all models of real-life situations, especially models involving human
behavior, are approximate. For applications requiring higher accuracy, it would
then be natural to look for a more accurate model – e.g., to consider larger
values of parameters k and n.
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