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Abstract

To predict how the Pavement Condition Index will change over time,
practitioners use a complex empirical formula derived in the 1980s. In this
paper, we provide a possible theoretical explanation for this formula, an
explanation based on general ideas of invariance. In general, the existence
of a theoretical explanation makes a formula more reliable; thus, we hope
that our explanation will make predictions of road quality more reliable.

1 Formulation of the Problem

The quality of a road pavement is described by a Pavement Condition Index
(PCI) that takes into account all possible pavement imperfections [2]. The
perfect condition of the road corresponds to PCI = 100, and the worst possible
condition corresponds to PCI = 0.

As the pavement ages, its quality deteriorates. To predict this deterioration,
practitioners use an empirical formula developed in [5]:

PCI = 100− R

(ln(α)− ln(t))1/β
, (1)

where t is the pavement’s age, and R, α are corresponding parameters.
In this paper, we propose a possible theoretical explanation for this empiri-

cal formula, explanation based on the general notions of invariance. In general,
when a formula has a theoretical explanation, it increases the users’ confidence
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in using this formula; this was our main motivation for providing such an ex-
planation.

2 General Invariances

Main natural transformations. In order to describe our explanation, let us
recall the basic ideas of invariance. Many of these ideas come from the fact that
in data processing, we use numerical values of physical properties. In general, for
the same physical quantity, we get different numerical values depending on what
measuring unit we use and what starting point we use as a 0 value. For example,
if we replace meters with centimeters, all numerical values get multiplied by 100.
In general, if we replace the original measuring unit with a new unit which is
λ times smaller, then each original numerical value x is replaced by the new
numerical value λ · x. This transformation is known as scaling.

Similarly, if for measuring temperature, we select a new starting point which
is 32 degrees below the original zero, then this number 32 is added to all the
numerical values. In general, if we choose a new starting point which precedes
the original one by x0 units, then each original numerical value x is replaced by
the new numerical values x+ x0. This transformation is known as shift.

Notion of invariance. The physics does not change if we simply change the
measuring unit and/or change the starting point. Thus, it makes sense to require
that the physical properties should not change if we apply the corresponding
natural transformations: scaling or shift; see, e.g., [3, 6]. In particular, it makes
sense that the relations y = f(x) between physical quantities be thus invariant.

Of course, if we change the measuring unit for x, then we may need to change
the measuring unit for y. For example, the formula y = x2 for the area y of the
square of linear size x does not depend on the units, but if we change meters
to centimeters, we also need to correspondingly change square meters to square
centimeters. So, the proper definition of invariance is that for each natural
transformation x → X there exists an appropriate transformation y → Y such
that if, in the original scale, we had y = f(x), then in the new scale, we will
have Y = f(X).

Invariant dependencies: towards a general description. There are two
possible types of natural transformations for x: scaling and shift. Similarly,
there are two possible types of natural transformation of y. Depending on
which class of natural transformation we choose for x and for y, we will thus
get 2 ·2 = 4 possible cases. Let us describe these four cases explicitly, and let us
describe, for each of the cases, what are the corresponding invariant functions.

Case of x-scaling and y-scaling. In this case, for each λ > 0, there exists a
value µ > 0 such that if we have y = f(x), then for X = λ · x and Y = µ · y,
we will have Y = f(X). Substituting the expressions for Y and X into this
formula, and explicitly taking into account that µ depends on λ, we get the
following equation:

µ(λ) · f(x) = f(λ · x). (2)
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All continuous (and even discontinuous but measurable) solutions to this equa-
tions are known (see, e.g., [1]): they all have the form

f(x) = A · xb (3)

for some A and b.

Comment. The proof for general measurable functions is somewhat complex,
but in the natural case of differentiable dependence f(x), the proof is easy.

Namely, from the equation (2), we conclude that µ(λ) =
f(λ · x)

f(x)
. Since the

right-hand side of this equality is differentiable, the left-hand side µ(λ) is dif-
ferentiable too. Thus, we can differentiate both sides by λ and take λ = 1. As

a result, we get b · f(x) = x · df(x)

dx
, where b

def
= µ′(1). We can separate the

variables x and f by moving all the terms containing x to one side and all the

terms containing f to the other side; then, we get b · dx
x

=
df

f
. Integrating

both sides, we get ln(f) = b · ln(x) + C, thus indeed f = exp(ln(f)) = A · xb,
where A = exp(C).

Case of x-scaling and y-shift. In this case, for each λ > 0, there exists a
value y0(λ) such that if y = f(x), then Y = f(X) for Y = y+ y0 and X = λ ·x.
Thus, we get

f(x) + y0(λ) = f(λ · x). (4)

If the function f(x) is differentiable, then the difference

y0(λ) = f(λ · x)− f(x)

is also differentiable. Differentiating both sides of the equation (4) with respect

to λ and taking λ = 1, we get b = x · df(x)

dx
, where b

def
= y′0(1). Separating the

variables, we get df = b · dx
x

, and after integration, we get

f(x) = A+ b · ln(x) (5)

for some constant A.

Comment. Similarly to the previous case, the same formula (5) holds if we only
assume that f(x) is measurable [1].

Case of x-shift and y-scaling. In this case, for each x0, there exists a value
λ(x0) such that if y = f(x), then Y = f(X) for Y = λ · y and X = x + x0.
Thus, we get

λ(x0) · f(x) = f(x+ x0). (6)

If the function f(x) is differentiable, then the ratio λ(x0) =
f(x+ x0)

f(x)
is

also differentiable. Differentiating both sides of the equation (6) with respect
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to x0 and taking x0 = 0, we get b · f(x) =
df(x)

dx
, where b

def
= λ′(0). Separating

the variables, we get
df

f
= b · dx, and after integration, we get ln(f) = b · x+C

hence
f(x) = A · exp(b · x), (7)

where A = exp(C).

Comment. Similarly to the previous two cases, the same formula (7) holds if we
only assume that f(x) is measurable [1].

Case of x-shift and y-shift. In this case, for each x0, there exists a value
y0(x0) such that if y = f(x), then Y = f(X) for Y = y + y0 and X = x + x0.
Thus, we get

f(x) + y0(x0) = f(x+ x0). (8)

If the function f(x) is differentiable, then the difference y0(x0) = f(x+x0)−
f(x) is also differentiable. Differentiating both sides of the equation (8) with

respect to x0 and taking x0 = 0, we get b =
df(x)

dx
, where b

def
= y′0(0). Thus,

f(x) = A+ b · ln(x) (9)

for some constant A.

Comment. In this case too, the same formula (9) holds if we only assume that
f(x) is measurable [1].

3 First Attempt: Let Us Directly Apply Invari-
ance Ideas to Our Problem

PCI and age: scale-invariance or shift-invariance? We are analyzing how
PCI depends on the pavement’s age t. To apply invariances to our dependence,
we need first to analyze which invariances are reasonable for the corresponding
variables – PCI and age.

For age, the answer is straightforward: there is a clear starting point for
measuring age, namely, the moment when the road was built. On the other
hand, there is no fixed measuring unit: we can measure age in years or in
months or – for good roads – in decades. Thus, for age:

• shift-invariance – corresponding to the possibility of changing the starting
point – makes no physical sense, while

• scale-invariance – corresponding to the possibility of changing the mea-
suring unit – makes perfect sense.

For PCI, the situation is similar. Namely, there is a very clear starting point
– the point corresponding to the newly built practically perfect road, when PCI

4



= 100. From this viewpoint, for PCI, shifts do not make much physical sense.
If we select 100 as the starting point (i.e., as 0), then instead of the original
numerical values PCI, we get shifted values PCI− 100.

A minor problem with these shifted values is that they are all negative, while
it is more convenient to use positive numbers. Thus, we change the sign and
consider the difference 100− PCI.

On the other hand, the selection of point 0 is rather subjective. What is
marked as 0 in a developed country that can afford to invest money into road
repairs may be a passable road in a poor country, where most of the roads are,
from the viewpoint of US standards, very bad; see, e.g., [4]. So, for PCI (or, to
be more precise, for 100− PCI), it probably makes sense to use scaling.

Let us directly apply the invariance ideas. In view of the above analysis,
we should be looking for a dependence of y = 100 − PCI on x = t which is
invariant with respect to x-scaling and y-scaling. As we have discussed in the
previous section, this requirement leads to y = A · xb, i.e., to 100−PCI = A · tb
and PCI = 100−A · tb.

This formula may be reasonable from the purely mathematical viewpoint,
but in practice, it is a very crude description of what we actually observe. Thus,
the direct application of invariance ideas does not lead to good results.

4 Let Us Now Apply Invariance Ideas Indirectly

Idea. Since we cannot apply the invariance requirements directly – to describe
the dependence of y = 100 − PCI on x = t, a natural idea is to apply these
requirements indirectly. Namely, we assume that there is some auxiliary inter-
mediate variable z such that:

• y depends on z,

• z depends on x, and

• both these y-on-z and z-on-x dependencies are, in some reasonable sense,
invariant.

Options. We know that for x and for y, only scaling makes sense. However, for
the auxiliary variable z, in principle, both shifts and scalings may be physically
reasonable. Depending on which of the two types of transformations we use for
z when describing y-on-z and z-on-x dependencies, we get four possible options:

• for both y-on-z and z-on-x dependencies, we use z-shift;

• for both y-on-z and z-on-x dependencies, we use z-scaling;

• for y-on-z dependence, we use z-shift, while for z-on-x dependence, we
use z-scaling;

• for y-on-z dependence, we use z-scaling, while for z-on-x dependence, we
use z-shift.
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Let us consider these four cases one by one.

Case when for both y-on-z and z-on-x dependencies, we use z-shift.
In this case, in accordance to the results presented in Section 2, we have z =
A+b ·(x) and y = A1 ·(b1 ·z). Substituting the expression for z into the formula
for y, we get

y = A1 · exp(A+ b · ln(x)) = (A1 · exp(A)) · (exp(ln(x))b = A2 · xb,

where A2
def
= A1 · exp(A). This is exactly the formula coming from the direct

application of invariance requirements, and we already know that this formula
is not very adequate for describing the experimental data.

Case when for both y-on-z and z-on-x dependencies, we use z-scaling.
In this case, we have z = A · zb and y = A1 · zb1 . Thus, here,

z = A1 ·
(
A · xb

)b1
= A2 · xb2 ,

where A2
def
= A1 · Aα1 and b2

def
= b · b1. Thus, in this case, we also get the same

formula as for the direct application of invariance.

Case when for y-on-z dependence, we use z-shift, while for z-on-x
dependence, we use z-scaling. Here, z = A ·xb and y = A1 · exp(b1 · y), thus

y = A1 · exp
(
b1 ·A · xb

)
, i.e., y = A1 · exp

(
b2 · xb

)
, where b2

def
= b1 · A. So, for

PCI = 100− y and x = t, we get the dependence

PCI = 100−A1 · exp
(
b2 · tb

)
. (10)

Interestingly, this is one of the formula that was tested in [5] and which turned
out to work not so well as the formula that was selected.

Case when for y-on-z dependence, we use z-scaling, while for z-on-x
dependence, we use z-shift. In this case, z = A + b · ln(x) and y = A1 · zb,
thus y = A1 · (A+ b · ln(x))b1 . So, for PCI = 100− y and x = t, we get

PCI = 100−A1 · (A+ b · ln(x))b1 . (11)

Let us show that this is indeed the desired formula (1).
Indeed, here,

A+ b · ln(x) = (−b) ·
((
−A
b

)
− ln(x)

)
. (12)

For α
def
= exp

(
−A
b

)
, we have ln(α) = −A

b
, so the formula (12) takes the form

A+ b · ln(x) = (−b) · (ln(α)− ln(t)). Thus, the formula (11) takes the form

PCI = 100−A1 · (−b)b1 · (ln(α)− ln(t))b1 ,
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i.e., the desired form (1) with R = A1 · (−b)b1 and β = − 1

b1
.

Conclusion. We indeed derived the empirical formula (1) for the decrease of
PCI over time from the general invariance requirements. To be more precise,
from the invariance requirements, we can derive two possible formulas:

• the desired formula (1) – which is in good accordance with the empirical
data, and

• the alternative formula (10) – which is not a good fit for empirical data.

Since in general, the existence of a theoretical explanation makes a formula more
reliable, we hope that our explanation will make predictions of road quality
more reliable.

Acknowledgments

This work was partially supported by the Universidad de Piura in Peru (UDEP)
and by the US National Science Foundation via grants 1623190 (A Model of
Change for Preparing a New Generation for Professional Practice in Computer
Science) and HRD-1242122 (Cyber-ShARE Center of Excellence).

References

[1] J. Aczel and J. Dhombres, Functional Equations in Several Variables, Cam-
bridge University Press, Cambridge, UK, 1989.

[2] American Society for Testing and Materials (ASTM), Standard Test Method
for Measuring the Longitudal Profile of Traveled Surfaces with an Accelerom-
eter Established Inertial Profiling Reference, ASTM Standard E950/E950M-
09, 2018.

[3] R. Feynman, R. Leighton, and M. Sands, The Feynman Lectures on Physics,
Addison Wesley, Boston, Massachusetts, 2005.

[4] E. Greenbaum, Emerald Labyrinth: A Scientist’s Adventures in the Jungles
of the Congo, ForeEdge, Lebanon, New Hampshire, 2018.

[5] Metropolitan Transportation Commission (MTC), Technical Appendices de-
scribing the Development and Operation of the Bay Area Pavement Manage-
ment System (PMS), prepared by Roger E. Smith, 1987.

[6] K. S. Thorne and R. D. Blandford, Modern Classical Physics: Optics, fluids,
Plasmas, Elasticity, Relativity, and Statistical Physics, Princeton University
Press, Princeton, New Jersey, 2017.

7


	Towards a Theoretical Explanation of How Pavement Condition Index Deteriorates Over Time
	Recommended Citation

	tmp.1583782357.pdf.s8Pig

