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Abstract

According to the Nobelist John Nash, if a group of people wants to
selects one of the alternatives in which all of them get a better deal than
in a status quo situations, then they should select the alternative that
maximizes the product of their utilities. In this paper, we provide a new
(simplified) derivation of this result, a derivation which is not only simpler
– it also does not require that the preference relation between different
alternatives be linear.

1 Introduction

Practical problem. In many practical situations, a group of people needs to
make a joint decision. They can stay where they are – in the “status quo” state.
However, they usually have several alternatives in which each of them gets a
better deal than in the status quo state. Which of these alternatives should
they select?

Nash’s bargaining solution to this problem. To solve this problem, in
1950, the Nobelist John Nash formulated several reasonable conditions that the
selection must satisfy [4]. He showed that the only way to satisfy all these con-
ditions is to select the alternative that maximizes the product of participants’
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utilities – special functions that describe a person’s preferences in decision the-
ory; see, e.g., [1, 2, 3, 5, 6].

Comment. For readers’ convenience, in the following section we briefly describe
what is utility.

What we do in this paper. In this paper, we provide a new simplified
derivation of Nash’s bargaining solution, a derivation that is not only simpler –
this derivation also uses fewer assumptions: e.g., it does not assume that there
is total (linear) pre-order between different alternatives.

2 What Is Utility: A Brief Reminder

How can we describe person’s preferences? Let us select one of the
participants. For this participants, we have a status quo situation A0, and we
have several other situations A of what this person will get according to different
alternatives described by the group. In all these situations, A is better than A0

– otherwise, this participant will not agree to select this alternative. We will
denote this preference by A0 < A.

How can we describe this person’s preferences.
For this purpose, let us select a very good (“ideal”) alternative A+, an

alternative that for this person will be better than anything that he or she can
get in real life. Then, for each real number p from the interval [0, 1], we can
form a lottery L(p) in which:

• the participant will get A+ with probability p and

• the participant will retain his/her status-quo situation in all other cases –
i.e., with probability 1− p.

To provide a numerical estimate of the quality of an alternative A, we can then
ask the participant to compute this alternative A with lotteries L(p) correspond-
ing to different values p.

When p = 0, then in the corresponding lottery L(p), we simply get the status
quo with probability 1. Thus, this lottery is clearly worse than A: L(0) < A. As
the probability of the very good outcome increases, the lottery becomes better
and better, and for p = 1, this lottery will mean getting A+ with probability 1
– which is, clearly, better than A: A < L(1).

One can show that there exists a threshold

u(A)
def
= sup{p : L(p) < A} = inf{p : A < L(p)}

such that:

• for probabilities p < u(A), we have L(p) < A, and

• for probabilities p > u(A), we have A < L(p).
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This threshold u(A) is known as the utility of the alternative A.
From the above properties of the utility, it follows that for each ε > 0, we

have
L(u(A)− ε) < A < L(u(A) + ε).

For very small ε, the probabilities u(A)− ε, u(A), and u(A) + ε are practically
indistinguishable. So, from the practical viewpoint, we can say that the lottery
L(u(A)) is equivalent to the alternative A. We will denote this equivalence by

A ≡ L(u(A)).

Comment. By definition, the status quo alternative A0 has utility 0.

Utility is defined modulo scaling. The above definition of utility depends
on the selection of a very good alternative A+. What if we select a differ-
ent very good alternative A′+? What is the relation between the utility u(A)
corresponding to A+ and the utility u′(A) corresponding to A′+?

Without losing generality, let us assume that A+ is better than A′+, i.e., that
A0 < A′+ < A+. In this case, for the alternative A′+, we can find the A+-based
utility value u(A′+) for which A′+ is equivalent to the lottery L(u(A′+)), a lottery
in which:

• the participant will get A+ with the probability u(A′+) and

• the participant will remain in the status quo state with the remaining
probability 1− u(A′+).

Suppose now that for some alternative A, we know its A′+-based utility
u′(A). By definition of utility, this means that the alternative A is equivalent
to a lottery L′(u′(A)), in which:

• we get A′+ with probability u′(A) and

• we get the status quo with the remaining probability 1− u′(A).

As we have mentioned, the alternative A′+ is, in its turn, equivalent to the
lottery L(u(A′+)). Thus, the original alternative A is equivalent to a two-stage
lottery in which:

• first, we select either A′+ (with probability u′(A)) or the status quo – with
probability 1− u′(A);

• if we selected A′+ on the first stage, then on the second stage, we select
either A+ (with probability u(A′+)), or we retain the status quo state with
the remaining probability 1− u(A′+).
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In this two-stage lottery, we end up either with A+ or with the status quo. The
probability to get A+ is equal to the product u′(A) · u(A′+). By definition of
utility, this is exactly the A+-based utility u(A) of the alternative A. So,

u(A) = u′(A) · u(A′+).

Thus, if we change the very good state, all the values of the utility get
multiplied by some constant. In this sense, utility is defined modulo such “re-
scaling”

u(A)→ c · u(A).

Need for scale-invariance. For each participant, we can select different very
good alternatives A+ and thus, get different numerical values of his/her utility.
This selection is very arbitrary and hence, should not affect what decision the
group makes. In other words, the group’s decision should not change if we
simply re-scale the utilities of one (or more) of the participants.

Comment. Now, we are ready to formulate our main result.

3 A New (Simplified) Explanation of Nash’s Bar-
gaining Solution

Let us describe the problem in precise terms. We consider a situation
in which n participants need to make a joint decision. In this situation. Each
possible alternative can be characterized by a tuple u = (u1, . . . , un) of the
corresponding utility values. We only consider alternatives in which ui > 0 for
all i – otherwise why would the i-th person agree to this alternative if he/she
does not gain anything – or even lose something?

For some alternatives u and u′, the group prefers u′ to u. For example, if
each person gets more in alternative u′ than in u, then u′ is clearly better than
u. We will denote this preference by u < u′.

For some alternatives u and u′, the group may consider them equally good;
we will denote this by u ∼ u′. We also allow the possibility that for some pairs
of alternatives u and u′, the group cannot decide which of them is better. In
other words, we do not assume that the preference relation is total (linear).

The relations < and ∼ should satisfy natural transitivity conditions: e.g., if
u′ is better than u and u′′ is better than u′, then u′′ should be better than u.
We will call such a pair of relations (<,∼) a preference relation; we will give a
precise definition shortly.

We assume that the preference relation is fair in the sense that all partici-
pants are treated equally. In particular, if we perform any permutation of the
utilities, the alternative should remain of the same quality to the group: e.g.,
(a, b) should be of the same quality as (b, a): (a, b) ∼ (b, a).
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Finally, since utility ui of each participants is determined modulo re-scaling
ui → ci · ui, relative preference of two different alternatives should not change
if we perform such a re-scaling. Thus, we arrive at the following definitions.

Definition 1. Let A be a set; its elements will be called alternatives. By a
preference relation on the set A, we mean a pair of relations (<,∼) with the
following properties:

• for each a, we have a ∼ a;

• for each a and b, if a ∼ b, then b ∼ a;

• for each a and b, if a ∼ b, then we cannot have a < b;

• for each a, b, and c, if a < b and b < c, then a < c;

• for each a, b, and c, if a < b and b ∼ c, then a < c;

• for each a, b, and c, if a ∼ b and b < c, then a < c;

• for each a, b, and c, if a ∼ b and b ∼ c, then a ∼ c.

Definition 2. Let A = IRn
+ be a set of all n-tuples u = (u1, . . . , un) on positive

numbers, and let (<,∼) be a preference relation on the set A.

• We way that the pre-order is monotonic if whenever we have ui < u′i for
all i, then we should have u < u′.

• We say that the pre-order is fair if for each permutation

π : {1, . . . , n} → {1, . . . , n}

and for each alternative u, we have (u1, . . . , un) ∼ (uπ(1), . . . , uπ(n)).

• We say that the pre-order is scale-invariant if for every two alternatives u
and u′ and for each tuples (c1, . . . , cn) of positive numbers:

– if (u1, . . . , un) < (u′1, . . . , u
′
n) then

(c1 · u1, . . . , cn · un) < (c1 · u′1, . . . , cn · u′n);

– if (u1, . . . , un) ∼ (u′1, . . . , u
′
n) then

(c1 · u1, . . . , cn · un) ∼ (c1 · u′1, . . . , cn · u′n).

Proposition 1. There is one and only one monotonic fair scale-invariant
preference relation:

(u1, . . . , un) < (u′1, . . . , u
′
n)⇔

n∏
i=1

ui <

n∏
i=1

u′i;
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(u1, . . . , un) = (u′1, . . . , u
′
n)⇔

n∏
i=1

ui =

n∏
i=1

u′i.

Comments.

• So, we indeed have a new explanation for Nash’s bargaining solution.

• Actually, the above preference relation has a stronger property of strong
monotonicity: that if ui ≤ u′i for all i and ui < u′i for some i, then u < u′.

Proof. It is easy to check that the preference relation corresponding to Nash’s
bargaining solution is indeed monotonic, fair, and scale-invariant. So, to com-
plete the proof, it is sufficient to show that every monotonic, fair, and scale-
invariant bargaining solution is indeed described by the above formulas.

Indeed, due to symmetry, for all values u2, u3, . . . , un, we have

(1, u2, u3, . . . , un) ∼ (u2, 1, u3, . . . , un).

For each value u1 > 0, we can use scale-invariance with c1 = u1 and c2 = . . . =
cn = 1 and conclude that

(u1, u2, u3, . . . , un) ∼ (u1 · u2, 1, u3, . . . , un).

So, we replace two values u1 and u2 with the product u1 · u2 and 1 without
losing equivalence.

Similarly, we can replace the two values u1 · u2 and u3 with the product
(u1 · u2) · u3 and 1, so

(u1 · u2, 1, u3, u4, . . . , un) ∼ (u1 · u2 · u3, 1, 1, u4, . . . , un)

and thus, by transitivity – which is part of the definition of the preference
relation – we get

(u1, u2, u3, u4, . . . , un) ∼ (u1 · u2 · u3, 1, 1, u4, . . . , un).

We can then similarly absorb u4, etc., until we get

(u1, . . . , un) = (u1 · . . . · un, 1, . . . , 1).

So all alternatives with the same value of the product u1 · . . . ·un are equivalent
to the same alternative

(u1 · . . . · un, 1 . . . , 1)

and are, thus, equivalent to each other.
Because of this property, each alternative

(p, 1, . . . , 1)
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is equivalent to
( n
√
p, n
√
p, . . . , n

√
p ) .

When p < p′, then n
√
p < n
√
p′. So, due to monotonicity,

( n
√
p, n
√
p, . . . , n

√
p ) <

(
n
√
p′, n
√
p′, . . . , n

√
p′
)

and thus,
(p, 1, . . . , 1) < (p′, 1, . . . , 1).

So, indeed, alternatives with the larger value of the product are better.
The proposition is proven.

Comment. In the previous text, we dismissed the possibility of alternatives with
some of the values 0. It turns out that this dismissal can also be justified on
mathematical grounds. Namely, let us show that in this case, no preference
relation can satisfy all the above requirements.

Proposition 2. On the set A = IRn
≥0 of all tuples with non-negative compo-

nents, no preference relation is strongly monotonic, fair, and scale-invariant.

Proof. Due to symmetry, (1, 0) ∼ (0, 1). By using c1 = 2 and c2 = 1, we
conclude that (2, 0) ∼ (0, 1), so by transitivity (1, 0) ∼ (2, 0), which contradicts
to strong monotonicity. The proposition is proven.
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