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Abstract

In medical and other applications, expert often use rules with several
conditions, each of which involve a quantity within the domain of expertise
of a different expert. In such situations, to estimate the degree of confi-
dence that all these conditions are satisfied, we need to combine opinions of
several experts – i.e., in fuzzy techniques, combine membership functions
corresponding to different experts. In each area of expertise, different ex-
perts may have somewhat different membership functions describing the
same natural-language (“fuzzy”) term like small. It is desirable to present
the user with all possible conclusions corresponding to all these member-
ship functions. In general, even if, for each area of expertise, we have
only a 1-parametric family characterizing different membership function,
then for rules with 3 conditions, we already have a difficult-to-interpret
3-parametric family of possible consequences. It is thus desirable to limit
ourselves to the cases when the resulting family is still manageable – e.g.,
is 1-parametric. In this paper, we provide a full description of all such
families. Interestingly, it turns out that such families are possible only if
we allow non-normalized membership functions, i.e., functions for which
the maximum may be smaller than 1. We argue that this is a way to
go, since normalization loses some information that we receive from the
experts.
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1 Formulation of the Problem

Need for fuzzy techniques. In many practical problems, people make deci-
sions:

• medical doctors treat patients,

• pilots control planes, etc.

In all these cases, some people perform better than others. It is therefore desir-
able to incorporate the knowledge of these top performers into a computer-based
system that would provide an advice to others – or even, if appropriate, replace
human controllers and human decision makers altogether.

In most cases, top performers are perfectly willing to share their knowledge
and their experience. The challenge is that often, this knowledge and this ex-
perience comes in the form of imprecise (“fuzzy”) words from natural language,
such as “small”, “high”, etc. For example, a medical doctor may give recom-
mendations what to do is a patient has high fever or strong cough or small-size
rash, without specifying what exactly these words mean.

We humans more or less understand knowledge presented in these terms,
but computers, in a nutshell, only understand numbers. It is therefore desirable
to translate natural-language rules into numbers.

This was, in effect, the main purpose of fuzzy techniques invented by Lotfi
Zadeh in the 1960s; see, e.g., [1, 2, 3, 5, 6, 7].

Fuzzy logic: main idea. To describe a degree to which an expert is confi-
dent in his or her statement, we can ask the expert to make his/her degree of
confidence, e.g., on a scale from 0 to 10, so that:

• 0 means no confidence at all,

• 10 means full confidence, and

• intermediate degrees correspond to intermediate confidence values.

The resulting number depends on what scale we use, whether it is on a scale
from 0 to 5 or from 0 to 10, etc. To get an estimate which is not depending on
the scale, we can divide the corresponding number by the scale size. So, e.g., if
an expert marks 7 on a 0 to 10 scale, we describe his/her degree of confidence
by the number 7/10 = 0.7. This way, no matter what the scale is:

• the degree 0 corresponds to no confidence at all,

• the degree 1 corresponds to full confidence, and

• values intermediate between 0 and 1 corresponding to partial confidence.

To describe a natural-language property P (e.g., “small”), we ask the expert
to describe, for each value x of the corresponding quantity, the expert’s degree
of confidence that this values satisfies the corresponding property (e.g., that a
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given value x is small). The corresponding mapping that assigns, to each number
x, a degree to which the property holds for this value, is called a membership
function. The corresponding degree is denoted by µP (x).

Of course, there are infinitely many real numbers, so an expert cannot pro-
vide us with the confidence degree µP (x) for all these numbers. What we
normally do is:

• to ask the expert to estimate this degree for some of these values
x1, . . . , xn, and then

• to interpolate and extrapolate to other values x.

The more values n we ask about, the more adequately we describe the expert’s
knowledge.

How can we interpolate/extrapolate? A natural way to perform this inter-
polation/extrapolation is:

• to elicit these values from several experts,

• to get a good idea of what types of dependencies on x – i.e., to come up
with a parametric family of functions µP (c, x) that describes the opinions
of different experts for different values of the parameter(s) c, and then

• for each individual expert, to find the value(s) c for which his/her estimates
di best fit this family, i.e., for which µP (c, xi) ≈ di for all i.

Need for “and”-operations. In many applications, an expert checks several
conditions before making a decision. For example, a medical doctor can make
a certain recommendation if the fever is high and the blood pressure is high. In
general, these conditions have the form P (x) &Q(y) for some properties P and
Q. We may even have not just two, but three or more conditions combined.

To describe such conditions in numerical terms, we need to know, for each
pair (x, y), what is the expert’s degree of confidence that x has the property P
and that y has property Q.

We already mentioned that even when we have only one quantity x, we need
to ask many (n) questions to the expert. To get an adequate description of
the expert’s knowledge, we need to make this n is large as possible – i.e., this
n should be close to a limit of how many questions a person can answer in
reasonable time. The problem is that if we consider n possible values of x and
n possible values of y, then we get n2 possible pairs. The value n was already
at the limit. So, since n2 � n, there is no way that we can ask the expert about
all possible pairs. And if we have a rule that uses three conditions, then we
need to consider all n3 possible triples, and the situation will be even worse.

Since we cannot directly elicit the degree of composite statements like
P (x) &Q(y) from the expert, the only thing we can do is estimate these de-
gree based on the known estimates µP (x) and µQ(y) of the expert’s degree of
confidence in the component statements.
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For this purpose, we need an algorithm that would transform the degree of
confidence a in a statement A and the degree of confidence b in a statement
B into an estimate for the combined statement A&B. Such an algorithm is
called an “and”-operation, or, for historical reasons, a t-norm. We will denote
the result of applying the “and”-operation by f&(a, b).

This algorithm must satisfy several natural properties.

• Since A&B means the same asB&A, the estimates for these two formulas
should be the same: f&(a, b) = f&(b, a). In mathematical terms, an “and”-
operation must be commutative.

• Similarly, since A& (B&C) means the same as (A&B) &C, we must
have f&(a, f&(b, c)) = f&(f&(a, b), c), i.e., an “and”-operation must be
associative.

• If our degree of confidence in one (or both) of the statements increases,
then we expect our degree of confidence in A&B to also increase (or at
least to remain the same). Thus, the function f&(a, b) must be monotonic
in both variables: if a ≤ a′ and b ≤ b′, then f&(a, b) ≤ f&(a′, b′).

• If we change the degrees of confidence a little bit, we expect that the
estimate also not change much. In other words, we should require the
function f&(a, b) to be continuous.

• If A is absolutely true (i.e., if a = 1), then A&B is true if and only if B is
true. So, our degree of confidence f&(1, b) should be equal to our degree
of confidence b in the statement B: f&(1, b) = b.

• Similarly, if A is absolutely false (i.e., if a = 0), then A&B should be
false: f&(0, b) = 0.

There is a known classification of all the “and”-operations that satisfy all these
properties; see, e.g., the above-mentioned fuzzy textbooks.

Case when the same expert provides all the estimates. In some cases,
the same expert can meaningfully evaluate all the conditions.

Different experts may provide different membership functions. If we use k
parameters for describing this difference, we end up with a k-parametric family
of resulting decisions. For small k, this is a reasonable-size set of recommen-
dations between them a user of the corresponding computer-based system can
choose.

For example:

• some experts may prefer a more aggressive attitude towards the disease,
recommending higher doses of medicine, while

• other medical doctors prefer smaller doses (at least at first), trying to
minimize negative side effects of the corresponding medicine.
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Often, we need to combine the knowledge of several experts. The
above scheme works well when we have a single expert.

A challenging problem emerges since in many practical situations, decisions
are made based on the opinions of several experts. For example, in medicine,
many decisions – and many rules – incorporate opinions of several experts. For
example, if a patient has a persistent cough, he may be examined:

• by his regular doctor,

• by a specialist in allergies, and

• by a specialist in lung diseases, etc.

The natural-language rules may be fix, this rule may be taken from the well-
approved recommendations and/or textbooks, but the translations of the dif-
ferent terms from this rule will be given by different experts.

If the rule includes an opinion of three experts, then, taking into account that
there is a k-parametric variety of membership functions corresponding to each
expert, we will have a (3k)-parametric family of resulting recommendations.
Indeed, to describe a specific recommendation, we will need to list:

• k parameters corresponding to the first expert,

• k parameters corresponding to the second expert, and

• k parameters corresponding to the third expert.

Even for k = 1, we get too big a family of recommendations, too big to take
into account or even to describe graphically – graphically we can only describe
2-D sets reasonably well.

What we do in this paper. In this paper, we analyze this challenging problem
and, as a result of this analysis, come up with some ideas on how to solve it –
i.e., how to make fuzzy techniques more adequate for combining knowledge of
several experts.

2 Analysis of the Problem and the Resulting
Idea

Towards precise formulation of the problem. Let us start our analysis
with the simplest case of the above problem, when we have a single combination
A(x) &B(y) if two conditions. To estimate the degree to which this combination
is true, we ask two experts:

• an expert specializing in properties related to the quantity x, and

• an expert specializing in properties related to the quantity y.
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For each area of expertise, we have several experts who may provide us
with somewhat different membership functions. To keep everything feasible,
we select a small number k (e.g., k = 1), and describe membership functions
corresponding to different x-experts by a k-parametric family µA(c, x), where
c = (c1, . . . , ck) is the tuple of the corresponding parameters.

Similarly, we describe membership functions corresponding to different y-
experts by a k-parametric family µB(c′, y), where c′ is also a k-dimensional
tuple.

In general, if we combine these two degree, we get an expression
f&(µA(c, x), µB(c′, y)) that depends on 2k different parameters:

• k parameters forming a tuple c and

• k parameters forming a tuple c′.

We would like to make sure that all these functions can be described by only k
parameters.

We assume that the “and”-operation is fixed. In this case, the only choice
we can make is selecting different families µA(c, x) and µB(c′, y). So, we arrive
at the following precise formulation of the problem.

Precise formulation of the problem. For a given “and”-operation f&(a, b),
describe the conditions on the k-parametric families µA(c, x) and µB(c′, y) for
which the class of all possible functions of the type f&(µA(c, x), µB(c′, y)) is also
k-parametric.

Discussion. The “and”-operation can be very complicated. So, let us first
consider one of the simplest operations f&(a, b) = a · b – which, by the way,
was one of the operations proposed by Zadeh himself in his pioneering paper on
fuzzy techniques.

For this simple “and”-operation, the above problem takes the following form.

Particular case of this problem when f&(a, b) = a · b. Describe the condi-
tions on the k-parametric families µA(c, x) and µB(c′, y) for which the class of
all possible functions of the type µA(c, x) · µB(c′, y) is also k-parametric.

The general case can be reduced to this special case. Let us show that
the general case of the above problem can be reduced to the case f&(a, b) = a ·b.

Indeed, according to [4], every “and”-operation, for any ε > 0, can be ap-
proximated, with accuracy ε, by an “and”-operation of the type f−1(f(a) ·f(b))
for some monotonic function f(a); here, f−1(a) means an inverse function, i.e.,
a function for which f−1(f(a)) = a for all a. Since ε can be arbitrarily small,
from the practical viewpoint, this means that we can safely assume that the
original “and”-operation has this form.

For this “and”-operation, the desired property is that the family
f−1(f(µA(c, x)) ·f(µ(c′, y))) depends only on k parameters. Since the functions
f(a) and f−1(a) are invertible, they do not change the dimension of (= num-
ber of parameters in) the corresponding family. Thus, the desired property is
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equivalent to saying that the family of functions f(µA(c, x)) ·f(µ(c′, y)) depends
only on k parameters.

If we denote νA(c, x)
def
= f(µA(c, x)) and νB(c′, y)

def
= f(µB(c′, y)), then the

question takes the following form: Describe the conditions on the k-parametric
families νA(c, x) and νB(c′, y) for which the class of all possible functions of the
type νA(c, x) · νB(c′, y) is also k-parametric.

This is exactly the problem corresponding to the case when f&(a, b) = a · b.
So, if we can solve this problem, then from its solutions νA(c, x) and νB(c′, y),
we can determine the original membership functions as µA(c, x) = f−1(νA(c, x))
and µB(c′, y) = f−1(νB(c′, y)).

In view of this reduction of the general case to the case when f&(a, b) = a ·b,
in the following text, we will only consider this special case, when the “and”-
operation is simply a product.

Let us further analyze the problem. Let us fix some tuples c(0) and c′
(0)

in the interior of a region of all possible values of these tuples. Then, if we take
the values c in a small vicinity of the fixed tuple c(0), the functions

µA(c, x) · µB

(
c′

(0)
, y
)

(1)

will already form a k-parametric family. Thus, for each tuple c′ in the vicinity

of c′
(0)

, the product

µA

(
c(0), x

)
· µB(c′, y) (2)

should also be within this family – otherwise, the dimension of the entire family
(corresponding to all possible pairs (c, c′)) will be larger than k.

So, each product of the type (2) should coincide with one of the products
of type (1). In other words, for each tuple c′, we should have a tuple c(c′)
depending on c′ for which

µA(c(c′), x) · µB

(
c′

(0)
, y
)

= µA

(
c(0), x

)
· µB(c′, y). (3)

To simplify the resulting formula, let us divide both sides by the product

µB

(
c′

(0)
, y
)
· µA

(
c(0), x

)
. This way, the left-hand side will only depend on

x and the right-hand side will only depend on y:

µA(c(c′), x)

µA

(
c(0), x

) =
µB(c′, y)

µB

(
c′(0), y

) . (4)

The right-hand side of this equality does not depend on x; thus, the left-hand
side does not depend on x either – so it must depend only on c. If we denote
this ratio by r(c), then we conclude that

µA(c, x)

µA

(
c(0), x

) = r(c), (5)
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i.e., that

µA(c, x) = r(c) · µA

(
c(0), x

)
. (6)

So, all the functions µA(c, x) from the family can be obtained from one of them
by multiplying by an appropriate constant. Thus, in effect, all the functions from
this family have the form C · µA(x) for some function µA(x) and for different
possible values C.

By the way, since different functions from this family differ only by one
parameter – the multiplicative constant – this family is 1-dimensional, i.e., we
have k = 1.

Similarly, the left-hand side of the equality (4) does not depend on y; thus,
the right-hand side does not depend on y either – so it must depend only on c′.
If we denote this ratio by r′(c′), then we conclude that

µB(c′, y)

µB

(
c′(0), y

) = r′(c′), (7)

i.e., that

µB(c′, y) = r′(c′) · µB

(
c′

(0)
, y
)
. (8)

So, all the functions µB(c′, y) from the family can be obtained from one of them
by multiplying by an appropriate constant. Thus, in effect, all the functions
from this family have the form C ′ · µB(y) for some function µB(y) and for
different possible values C ′.

We have shown that if the above properties is satisfied, then the correspond-
ing families have this form. One can easily show that, vice versa, if we have
families of the type µA(C, x) = C · µA(x) and µB(C ′, y) = C ′ · µB(y), then the
products µA(C, x) · µB(C ′, y) have the form (C · C ′) · µA(x) · µB(y) and thus,
depend only on a single parameter C · C ′.

So, for the case when f&(a, b) = a ·b, we have a general solution to the above
problem.

Solution to the main problem when f&(a, b) = a · b. The following two
conditions are equivalent to each other:

• For two k-parametric families µA(c, x) and µB(c′, y), the class of all pos-
sible functions of the type µA(c, x) · µB(c′, y) is also k-parametric.

• k = 1 and both families can re-parameterized into families C · µA(x) and
C ′ · µB(y), where µA(x) and µB(y) are fixed and C and C ′ are arbitrary
real numbers.

Discussion. By using the above reduction, we can formulate the following
general solution for the above problem.

Solution to the main problem: general case. Let

f&(a, b) = f−1(f(a) · f(b)).

Then, the following two conditions are equivalent to each other:
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• For two k-parametric families µA(c, x) and µB(c′, y), the class of all pos-
sible functions of the type f&(µA(c, x), µB(c′, y)) is also k-parametric.

• k = 1 and both families can re-parameterized into families µA(C, x) =
f−1(C · νA(x)) and µB(C ′, y) = f−1(C ′ · νB(y)), where νA(x) and νB(y)
are fixed and C and C ′ are arbitrary real numbers.

Discussion: so maybe we do not need normalization. When we briefly
described the traditional fuzzy technique, we skipped one important step that
this technique normally includes: the normalization step.

Namely, for each property P , usually, after we elicit, for different values x,

the degrees µP (x), and if it turns out that m
def
= max

x
µP (x) < 1, we “normalize”

this membership function by dividing all its values by m, i.e., by taking the

values νP (x) =
µP (x)

m
. For such normalized membership functions, we always

have max
x

νP (x) = 1.

For some properties like “small”, normalization is not necessary: there is a
value x = 0 which is clearly absolutely small. However, for other properties
like “medium”, we may not have a value which the expert would consider to be
absolutely medium – so, in the normal fuzzy methodology, we would need to
apply normalization.

It all may sound reasonable until we realize that if a function µA(x) is normal-
ized, then no other function of the type C ·µA(x) will be normalized: indeed, if
max
X

µA(x) = 1, then max
x

(C ·µA(x)) = C and is, thus, normalized only if C = 1.

So, if we limit ourselves to normalized membership functions, the desired
families cannot exist: each of them would consist of only one membership func-
tion, which defeats the purpose of describing difference between the experts.
This is a rather gloomy conclusion, but we can turn it around and make it pos-
itive: if we want to describe the difference in opinion between different experts,
then we need to allow non-normalized membership functions.

Normalization only loses information. There is another, simpler reason
why we want to skip the normalization step:

• If we do not perform the normalization, then each degree µP (x) describes
the original expert’s opinion.

• However, when we apply normalization, we lose some of the information
provided by the expert: namely, the information about the largest of the
expert’s confidence degree.

For example, if we apply normalization, we are no longer be able to distinguish
between the two clearly different cases:

• the case when the expert considered, e.g., the value x = 2 as absolutely
medium, so that all rules with medium size as a condition are absolutely
applicable to this value, and
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• the case when the expert is not 100% sure that x = 2 is medium, and is,
thus, not absolutely sure that rules with medium size as a condition are
applicable to this value.
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