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Abstract

In principle, we can use many different characteristics of a probabil-
ity distribution. However, in practice, a few of such characteristics are
mostly used: mean, variance, moments, correlation, etc. Why these char-
acteristics and not others? The fact that these characteristics have been
successfully used indicates that there must be some reason for their se-
lection. In this paper, we show that the selection of these characteristics
can be explained by the fact that these characteristics are invariant with
respect to natural transformations – while other possible characteristics
are not invariant.

1 Formulation of the Problem

Need for probabilistic models. One of the main objectives of science is
predict the future state of the world, i.e., to predict the future values of the
world’s processes.

Some processes are deterministic. For example, in celestial mechanics, we
can predict the locations of the planets hundreds of years from now – and
indeed, such locations (and, in particular solar and lunar eclipses) – have been
successfully predicted hundreds of years ago.

However, most other processes are probabilistic. We cannot predict the exact
value of the stock market, we cannot predict tomorrow’s temperature – but what
we can usually predict reasonably well, based on our previous experiences, are
probabilities of different future values.

Need for numerical characteristics of probabilistic models. In the com-
puter, everything is stored as numbers. From this viewpoint, describing a future-
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related probability distribution means describing certain numerical characteris-
tics of this distribution.

If we consider probabilities describing the values of a single quantity, we need
numerical characteristics of the corresponding 1-D probability distribution. If
we consider probabilities describing the values of several quantities, we need
numerical characteristic of the corresponding joint multi-D distribution.

Which characteristics should we select? In principle, there are many
possible numerical characteristics of a probability distribution:

• we can use moments,

• we can use the values of the probability density function or of the cumu-
lative distribution function,

• we can use the characteristic function of the distribution, etc.;

see, e.g., [6].
Which of these characteristics should we select?

Which characteristic are usually selected? Interestingly, in practice, only
a few of these characteristics are routinely used.

If you give some raw 1-D data to a scientist or to an engineer, this scientist
or engineer will first compute the mean and the standard deviation; maybe he
or she will also compute the skewness. If you give them 2-D data they will
also compute covariance and correlations. These numerical characteristic are
so overwhelmingly used in practice that many scientific calculators have special
buttons automatically computing these characteristics

But why? The fact that these characteristics have been actively used by
practitioners means that indeed, in many practical situations, these particular
characteristic have been very helpful. The fact that they have not been replaced
by any other possible characteristics means that they are, in general, more
helpful than others.

A natural question is: why are these characteristics more helpful than others?

What we do in this paper. In this paper, we provide an answer to the above
“why” question. Namely, we show that:

• the most widely used numerical characteristic of probability distributions
are invariant with respect to natural transformations, while

• other possible characteristics are not invariant.

This explains why the selected characteristics are used.

Structure of this paper. We start, in Section 2, with analyzing what are
possible numerical characteristic of probability distributions. Then, in Section 3,
we describe natural symmetries and corresponding invariances. In Section 4, we
formulate the main result: that only moments – and characteristic determined
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by different moments – are invariant. In Section 5, we explain the ubiquity of
specific combinations of moments such as variance, correlation, and skewness.
For readers’ convenience, all the proofs are placed in a special Proofs Section 6.

2 Towards a General Description of Possible
Numerical Characteristics of Probability Dis-
tributions

Need for decision making. The ultimate goal of predictions is to make
decisions. If we know where the stock market will go, we should either buy
or sell the corresponding stocks. If we know tomorrow’s temperature, then we
should dress accordingly – and, if needed, get prepared to protect the plants
against a sudden cold.

So, when we select what numerical characteristics of probability distribu-
tions, we should take into account that these characteristics must be useful for
making a decision. In order to make a good decision, we need to have a good
understanding of the person’s preferences. Let us briefly recall how these pref-
erences are usually described and how we can make a decision based on these
preferences; for a detailed description, see, e.g., [1, 2, 3, 4, 5].

How can we describe human preferences. In order to describe a person’s
preferences, a reasonable idea is to select two extreme alternatives, more extreme
that anything that we will actually encounter:

• a very good alternative A+ which is better than anything that we will
actually encounter, and

• a very bad alternative A− which is worse than anything that we will
actually encounter.

Then, for each number p from the interval [0, 1], we can form a lottery – that
we will denote by L(p) – in which:

• we get A+ with probability p, and

• we get A− with the remaining probability 1− p.

When p = 0, we have L(0) = A−, so the corresponding lottery is worse than
any actual alternative A; we will denote this by A− < A. As the probability
p increases, the lottery becomes better and better, and for p = 1, we have
L(1) = A+ and thus, A < A+.

It is easy to show that there exists a threshold sup{p : L(p) < A} = inf{p :
A < L(p)} that separates probabilities for which A is better from probabilities
for which the lottery is better. This threshold value is known as the utility of
the alternative A. It is usually denoted by u(A).

By definition of utility, for any small value ε > 0, we have

L(u(A)− ε) < A < L(u(A) + ε).
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For very small values ε, the difference between the probabilities u(A), u(A)− ε,
and u(A) + ε is practically indistinguishable. In this sense, we can say that
the alternative A is equivalent to the lottery L(u(A)). We will denote this
equivalence by A ≡ L(u(A)).

Clearly, if p < p′, this means that the lottery L(p′) is better. Thus, if u(A) <
u(B), we have L(u(A)) < L(u(B)) and, since A ≡ L(u(A)) and B ≡ L(u(B)),
that A < B. So, one alternative is better than the other if its utility is larger.

How can we make a decision? In practice, when we make a decision, we
do not know the exact consequence of each of the possible actions a. At best,
we can, based on our prior experiences, estimate the probabilities p1, . . . , pn of

possible consequences A1, . . . , An. Let ui
def
= u(Ai) denote the utility of the i-th

alternative.
Each alternative Ai is equivalent to the corresponding lottery L(ui). Thus,

for the decision maker, the consequences of selecting an action a are equivalent
to a two-stage lottery, in which:

• first, we select one of the consequences Ai with probability pi, and then,

• depending on which consequence Ai we selected on the first stage, we
select the very good alterative A+ with probability ui and the very bad
alternative A− with probability 1− ui.

As a result of this two-stage lottery, we end up either with A+ or with A−, and
the probability of selecting A+ is equal to

p1 · u1 + . . .+ pn · un.

By definition, this probability is the utility u(a) of selecting an action a. Thus,
this utility is equal to the above expression:

u(a) = p1 · u1 + . . .+ pn · un.

We want to select the best action, i.e., the action with the largest possible
value of utility. In mathematical terms, the above formula for the utility of the
action simply means that the action’s utility is equal to the expected value E[ui]
of the utility. So, to make a proper decision, we need to know expected values
E[u(x)] of different functions u(x) – namely, functions describing the person’s
utility. Here, x may be a single parameter, may be several parameters.

Usually, small changes in x lead to equally small changes in our utility:
e.g., we do not expect much difference between temperatures 24 C or 25 C,
or between predicting that the Dow-Jones will rise by 101 or by 102 points.
Thus, it is reasonable to require that the utility function u(x) is smooth (=
differentiable). Thus, we arrive at a following definition.

Definition 2.1. Let n ≥ 1 by an integer. By a characteristic, we mean
a mapping that assigns, to each random vector X = (X1, . . . , Xn), a value
E[f(X1, . . . , Xn)], where f(x1, . . . , xn) is a smooth function of n variables.
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Comment. According to our definition, characteristics and in 1-1 correspon-
dence with smooth functions. Thus, to make the exposition clearer, in the fol-
lowing text, we will sometimes identify a characteristic with the corresponding
function f(x1, . . . , xn).

Examples.

• For n = 1 and f(x1) = x1, we get the mean.

• For n = 1 and f(x1) = x21, we get the second moment.

• For n = 1 and f(x1) = exp(ω · x1 · i), we get different values of the
characteristic function, etc.

Need to select a finite set of characteristics. In the computer, we can store
only finitely many numbers. Thus, we need to select a finite set of characteristics.

Some sets are equivalent: e.g., if we know the mean and the second moment,
then we can also compute the expected value of the functions 2x and 2x2, and
vice versa. Let us describe a general definition.

Definition 2.2. We say that the set of characteristics {f1, . . . , fm} and
{g1, . . . , gp} are equivalent if the following two conditions are satisfied:

• the values E[f1], . . . , E[fm] of the characteristics from the first set
uniquely determine the values of all the characteristics E[g1], . . . , E[gp]
from the second set, and

• the values E[g1], . . . , E[gp] of the characteristics from the second set
uniquely determine the values of all the characteristics E[f1], . . . , E[fm]
from the first set.

Proposition 2.1. The two sets of characteristics {f1, . . . , fm} and {g1, . . . , gp}
are equivalent if and only if the following two conditions are satisfied:

• each function gj(x) from the second set is equal to a linear combination
of functions from the first set and 1, i.e., if there exist coefficients aji for
which, for all j and all x, we have

gj(x) = aj0 + aj1 · f1(x) + . . .+ ajm · fm(x); and

• each function fi(x) from the second set is equal to a linear combination
of functions from the first set and 1, i.e., if there exist coefficients bij for
which, for all i and all x, we have

fi(x) = bi0 + bi1 · g1(x) + . . .+ bip · gp(x).
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3 Natural Symmetries and Corresponding In-
variances

Possibility of re-scaling. In data processing, we process the numerical values
of different quantities. It is important to mention, however, that for exact same
state of the world, the corresponding numerical values will change if we change
the measuring unit. For example:

• If we measure distances in km and then decide to switch to meters, then
all the numerical values will multiply by 1000.

• If, in our borderline region between the US and Mexico, we change the
monetary units from US dollars to Mexican pesos, then all the numerical
values are multiplied by approximately 20 (or whatever the exchange rate
will be).

In general, if we replace the original measuring unit with a λ > 0 times smaller
one, then all the numerical values will be multiplied by λ: x → λ · x. This
transformation is known as re-scaling.

Comment. In the above paragraph, we explained re-scaling corresponding to
positive values λ. In some situations, negative values are also possible. For
example:

• For the electric charge (and for the related quantities such as electric
current), the sign has been rather arbitrarily chosen. Nothing will change
if we view what was previously considered positive as negative and vice
versa.

• In economics, the positive trade deficit in a trade of country A with country
B is equivalent to a negative deficit when considered from the viewpoint
of country B.

In view of this possibility, in the following text, we will consider re-scalings with
negative coefficients λ as well.

Need for scale-invariance. Since the selection of a measuring unit is usually
rather arbitrary, it makes sense to require that the result of data processing not
depend on the choice of the measuring unit, i.e., that we should come up with
the same conclusion if we start with re-scaled data.

Possibility of shift. For many quantities, the numerical value also depends
on the starting point. For example:

• when we measure time, we can start from Year 0, or we can start with the
beginning of the financial year, or with the beginning of the quarter;

• when we measure temperature, we can start with the temperature at which
water freezes – as in Celsius scale – or with another starting point as, e.g.,
in the Fahrenheit scale;
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• when we estimate the country’s average or median income, we can consider
the absolute income – or, which makes some sense, we can subtract, from
each income, the minimum necessary to maintain living, and only compare
values in excess of this minimum.

In general, if we replace the original starting point with a new starting point
which is c unit before it, then this number c will be added to all the numerical
values x→ x+ c. This transformation is known as shift.

Need for shift-invariance. Since the selection of a starting point is often
rather arbitrary, it makes sense to require that the result of data processing not
depend on the choice of the starting point, i.e., that we should come up with
the same conclusion if we start with shifted data.

4 Invariant Characteristics: This Explains Why
Moments

Let us apply invariance ideas to selection of characteristics. In view
of the arguments presented in the previous section, it is desirable to select
characteristics in such a way that the resulting information not change if we
re-scale or shift the numerical values.

Definition 4.1. We say that a finite set of characteristics

{f1(x1, . . . , xn), . . . , fm(x1, . . . , xn)}

is shift-invariant if for every tuple c = (c1, . . . , cn), once we know the values

E[f1(X1, . . . , Xn)], . . . , E[fm(X1, . . . , Xn)],

then we should be able to uniquely determine the values

E[fi(X1 + c1, . . . , Xn + cn)]

for all i.

Definition 4.2. We say that a finite set of characteristics

{f1(x1, . . . , xn), . . . , fm(x1, . . . , xn)}

is scale-invariant if for every tuple c = (c1, . . . , cn), once we know the values

E[f1(X1, . . . , Xn)], . . . , E[fm(X1, . . . , Xn)],

then we should be able to uniquely determine the values E[fi(c1 ·X1, . . . , cn ·Xn)]
for all i.

Discussion. To describe all possible shift- and scale-invariant sets of charac-
teristics, we need to introduce the following auxiliary definitions.

7



Definition 4.3. By a moment, we mean a characteristic corresponding to
f(x1, . . . , xn) = xk1

1 · . . . · xkn
n , for some non-negative integers ki.

Notation. In the following text, the corresponding values E[f ] with be denoted
by letter M with indices listing each variable ki times. For example, E[Xi] will
be denoted by Mi, E

[
X2

i

]
by Mii, E[Xi ·Xj ] by Mij , etc.

Definition 4.4. We say that a finite set of moments is an ideal of moments if

for each moment xk1
1 · . . . ·xkn

n , this set also includes all the moments x
k′
1

1 · . . . ·x
k′
n

n

for which k′i ≤ ki for all i.

Examples.

• All first moments M1, . . . ,Mn form an ideal.

• The set of all first and second moments Mi and Mij forms an ideal, etc.

Discussion. Now, we are ready to formulate our main result.

Proposition 4.1. For each finite set of characteristics {f1, . . . , fm}, the fol-
lowing two conditions are equivalent to each other:

• the set of characteristics is shift- and scale-invariant, and

• the set of characteristics is equivalent to an ideal of moments.

Discussion. This results explains the ubiquity of moments.

5 Invariant Combinations of Characteristics:
This Explains Why Variance, Covariance, Co-
efficient of Variation, Correlation, and Skew-
ness

What we do in this section. In the previous section, we showed that with
respect to natural transformations, the only invariant characteristics are, in
effect, moments.

The next question is why some combinations of moments are actively used –
while others are used rarely. In this section, we show this can also be explained
by invariance. Specifically, we show that invariances explains the ubiquity of
five such widely used combinations: variance, covariance, correlation, coefficient
of variation, and skewness.

Comment. In contrast to a new (and not so easy to prove) result from the
previous section, results from this section are largely known – and are easy to
prove. We included these results into the paper, since they nicely supplement
the explanation provided in the previous section – of why moments and their
combinations are mostly used – by explaining the ubiquity of several specific
combinations of moments.
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Definition 5.1. We say that a mapping F (X1, . . . , Xn) that assigns a numerical
value to each random vector (X1, . . . , Xn) is shift-invariant if for each random
vector X = (X1, . . . , Xn) and each tuple c = (c1, . . . , cn) of real numbers, F
assigns the same value to the original random vector (X1, . . . , Xn) and to its
shift (X1 + c1, . . . , Xn + cn):

F (X1, . . . , Xn) = F (X1 + c1, . . . , Xn + cn).

Definition 5.2. We say that a mapping F (X1, . . . , Xn) that assigns a numerical
value to each random vector (X1, . . . , Xn) is scale-invariant if for each random
vector X = (X1, . . . , Xn) and each tuple c = (c1, . . . , cn) of real numbers, F
assigns the same value to the original random vector (X1, . . . , Xn) and to its
re-scaling (c1 ·X1, . . . , cn ·Xn):

F (X1, . . . , Xn) = F (c1 ·X1, . . . , cn ·Xn).

Discussion. Which combinations of moments are shift and/or scale-invariant?
Let us first consider combinations of first moments Mi = E[Xi].

Proposition 5.1. No combination f(M1, . . . ,Mn) of first order moments is
shift-invariant.

Proposition 5.2. No combination f(M1, . . . ,Mn) of first order moments is
scale-invariant.

Discussion. If we also allow second-order moments Mij = E[Xi · Xj ], then
shift- and/or scale-invariant combinations become possible.

Proposition 5.3. A combination f({Mi}, {Mij}) of the first two moments is
shift-invariant if and only if it a function of the variances Vi = Mii −M2

i and
covariances Cij = Mij −Mi ·Mj.

Discussion. This result explains the ubiquity of variance and covariance.

Proposition 5.4. A combination f({Mi}, {Mij}) of the first two moments is
scale-invariant if and only if it a function of the coefficients of variation CVi =
σi
Mi

(where σi
def
=
√
Vi) and the coefficients of covariance CVij =

Cij

Mi ·Mj
.

Discussion.

• This result explains the ubiquity of the coefficient of variation.

• For second-order moments, it is also possible to have combinations which
are both shift- and scale-invariance.
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Proposition 5.5. A combination f({Mi}, {Mij}) of the first two moments is
shift- and scale-invariant if and only if it a function of the correlations

ρij =
Cij

σi · σj
.

Discussion.

• This result explains the ubiquity of correlation.

• For the case when we have only one variable, the above result shows that no
combination of the first and second moments is shift- and scale-invariant.
It turns out that such an invariant combination is possible if we also allow
the third moment.

Proposition 5.6. A combination f(M1,M11,M111) of the first three moments
is shift- and scale-invariant if and only if it a function of the skewness

µ̃3 = E

[(
X1 −M1

σ1

)3
]
.

Discussion.

• This result explains the ubiquity of skewness.

• If we also allow the fourth moment, we get a function of skewness and
kurtosis:

Proposition 5.7. A combination f(M1,M11,M111,M1111) of the first four
moments is shift- and scale-invariant if and only if it a function of the skewness

µ̃3 and of the kurtosis µ̃4 = E

[(
X1 −M1

σ1

)4
]

.

6 Proofs

Proof of Proposition 2.1. Clearly, if

gj(x) = aj0 + aj1 · f1(x) + . . .+ ajm · fm(x),

then
E[gj ] = aj0 + aj1 · E[f1] + . . .+ ajm · E[fm].

So, if we know the values E[fi], we will indeed be able to uniquely determine
the values of E[gj ] – and vice versa.

Thus, to prove the proposition, it is sufficient to prove that if, e.g., a function
g1(x) cannot be represented as the desired linear combination, then we cannot
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uniquely determine the value of E[g1] based on the known values of E[fi]. In-
deed, let us assume that g1 is not equal to a linear combination of the functions
fi and 1. On the space of all the functions, we have a natural scalar (dot)

product 〈f, g〉 def=
∫
f(x) · g(x) dx.

We can then use the usual Gram-Schmidt orthonormalization in the linear
space spanned by the functions fi and 1 and find, as their linear combinations.
the orthonormal vectors e1, . . . , eq that span the exact same linear space – and
for which 〈ei, ei〉 = 1 for all i and 〈ei, ej〉 = 0 for all i 6= j. Then, the function
g1(x) can be represented as

g1(x) = 〈g1, e1〉 · e1(x) + . . .+ 〈g1, eq〉 · eq(x) + e(x),

where the difference

e(x)
def
= g1(x)− 〈g1, e1〉 · e1(x)− . . .− 〈g1, eq〉 · eq(x)

is:

• orthogonal to all the vectors ei(x) – and thus, to their linear combinations
fi and 1, and

• different from 0 – since otherwise, g1(x) would be equal to a linear com-
bination of the functions fi and 1.

Due to the fact that g1(x) is orthogonal to all the functions ei(x), we conclude
that 〈g1, e〉 = 〈e, e〉 and, since the difference e(x) is not 0, we have

〈g1, e〉 = 〈e, e〉 > 0.

Let us now take a probability distribution which is everywhere positive on
some interval – e.g., a uniform distribution, with the probability density function

ρ(x) = const. Then, for small ε, the function ρ1(x)
def
= ρ(x) + ε · e(x) is also

everywhere positive. Since the function e(x) is orthogonal to 1, i.e.,
∫
e(x) dx =

0, we get
∫
ρ1(x) dx =

∫
ρ(x) dx = 1, so ρ1(x) is also a probability distribution.

Since e(x) is orthogonal to all the functions fi(x), we have

E1[fi] =

∫
fi(x) · ρ1(x) dx =

∫
fi(x) · ρ(x) dx = E[fi]

for all i. On the other hand,

E1[g1] =

∫
g1(x) · ρ1(x) dx =

∫
g1(x) · ρ(x) dx+ ε ·

∫
g1(x) · e(x) dx =

E[g1] + ε ·
∫
g1(x) · e(x) dx.

We know that
∫
g1(x) · e(x) dx = 〈g1, e〉 6= 0, so E1[g1] 6= E[g1].
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Thus, we have two distributions ρ and ρ1 for which the expected values E[fi]
are the same, but the expected values of E[g1] are different. Thus, the sets {fi}
and {gj} are indeed not equivalent. The proposition is proven.

Proof of Proposition 4.1.

1◦. One can easily check that the set of characteristics corresponding to an
ideal of moments is shift- and scale-invariant – and thus, that each equivalent
set of characteristics is also shift- and scale-invariant. So, to complete the proof,
we need to show that every shift- and scale-invariant set of characteristics is
equivalent to an ideal of moments.

2◦. Let us first analyze the consequences of shift-invariance. Due to Proposi-
tion 2.1, shift-invariance implies that for all possible shifts c = (c1, . . . , cn), each
shifted function fi(x1 + c1, . . . , xn + cn) is equal to a linear combination of the
original functions and of 1, with coefficients possibly depending on ci:

fi(x1 + c1, . . . , cn + cn) = ai0(c1, . . . , cn)+

ai1(c1, . . . , cn) · f1(x1, . . . , xn) + . . .+ aim(c1, . . . , cn) · fm(x1, . . . , xn). (1)

Let us first consider the shift by one of the variables. Without losing generality,

we will assume that this variable is x1. Let us fix the values x
(0)
2 , . . . , x

(0)
n

of all other variables, i.e., let us consider functions of one variable Fi(x1) =

fi

(
x1, x

(0)
2 , . . . , x

(0)
n

)
and Aij(c1) = aij(c1, 0, . . . , 0). For these functions, the

above equation takes a simplified form

Fi(x1 + c1) = Ai0(c1) +Ai1(c1) · F1(x1) + . . .+Aim(c1) · Fm(x1). (2)

In this equality, for each i, we have m + 1 unknown functions Aij(c1). To find
the values of these functions, let us select m+ 1 different value of x1:

x
(0)
1 , . . . , x

(m)
1 .

Substituting these m+1 values into the formula (2), we get the following system
of m+ 1 linear equations for m+ 1 unknowns Aij(c1):

Fi

(
x
(0)
1 + c1

)
= Ai0(c1) +Ai1(c1) · F1

(
x
(0)
1

)
+ . . .+Aim(c1) · Fm

(
x
(0)
1

)
;

. . .

Fi

(
x
(m)
1 + c1

)
= Ai0(c1) +Ai1(c1) · F1

(
x
(m)
1

)
+ . . .+Aim(c1) · Fm

(
x
(m)
1

)
.

By Cramer’s rule, the solution to this system is a linear combination of the right-

hand sides Fi

(
x
(k)
1 + c1

)
with coefficients depending on the values Fj

(
x
(k)
1

)
and thus, not depending on c1. The functions Fi are smooth, thus their linear
combination is also smooth. So, all the functions Aij(c1) are differentiable.

Since all the functions in the equality (2) are differentiable, we can differ-
entiate both sides with respect to c1 and then take c1 = 0. As a result, we
get

F ′i (x1) = αi0 + αi1 · F1(x1) + . . .+ αim · Fm(x1),
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where we denoted αij
def
= A′ij(0). We have such an equation for each i. Thus, for

m unknown functions Fi(x1), we have a system of linear differential equations
with constant coefficients:

F ′1(x1) = α10 + α11 · F1(x1) + . . .+ α1m · Fm(x1);

. . .

F ′m(x1) = αm0 + αn1 · F1(x1) + . . .+ αmm · Fm(x1).

We can transform this system to a more standard form if we add an auxiliary
function F0(x1) = 1 with equation F ′0(x1) = 0 and replace αi0 with an equivalent
expression αi0 · F0(x1):

F ′0(x1) = 0;

F ′1(x1) = α10 · F0(x1) + α11 · F1(x1) + . . .+ α1m · Fm(x1);

. . .

F ′m(x1) = αm0 · F0(x1) + αn1 · F1(x1) + . . .+ αmm · Fm(x1).

It is known that a general solution to such a system of equations is a linear
combination of functions xk1 ·exp(z·x1), where z are eigenvalues of the matrix αij ,
and a natural number k does not exceed the multiplicity of the corresponding
eigenvalue minus 1 – i.e., in this case, k ≤ m. In general, eigenvalues are complex
numbers z = a+ b · i. In terms of real numbers, the general solution is a linear
combination of the functions xk1 ·exp(a·x1)·sin(b·x1) and xk1 ·exp(a·x1)·cos(b·x1).

3◦. Let us now consider the consequences of scale-invariance. Similar to Part 2
of this proof, we get the formula

Fi(c1 · x1) = Bi0(c1) +Bi1(c1) · F1(x1) + . . .+Bim(c1) · Fm(x1) (3)

for some functions Bij(c1). Similarly to Part 2, we can conclude that the func-
tions Bij(c1) are smooth. Thus, we can differentiate both sides of the formula
(3) with respect to c1, take c1 = 1, and thus, get the following equation:

x1 · F ′i (x1) = βi0 + βi1 · F1(x1) + . . .+ βim · Fm(x1),

where we denoted βij
def
= B′ij(0). The left-hand side can be rewritten as

x1 ·
dFi

dx1
=

dF1

dx1/x1
,

i.e., as
dF1

dL
, where we denoted L

def
= ln(x1) (so that x1 = exp(L)). Hence,

in terms of the new variable L, for the corresponding functions Gi(L) =
Fi(exp(L)), we get

G′i(L) = βi0 + βi1 ·G1(L) + . . .+ βim ·Gm(L).

13



With respect to L, we again get a system of linear differential equations with
constant coefficients. So, its general solution is a linear combination of the
functions Lk · exp(a · L) · sin(b · L) and Lk · exp(a · L) · cos(b · L). Substituting
L = ln(x1) into these formulas and taking into account that exp(a · ln(x1)) =
(exp(ln(x1))a = xa1 , we conclude that F1(x1) is a linear combination of functions
(ln(x1))k · xa1 · sin(b · ln(x1)) and (ln(x1))k · xa1 · cos(b · ln(x1)).

4◦. From Part 2 and 3, we see each function Fi(x1) has to be represented in two
different forms. One can show that the only expression common to both forms is
xk1 for some natural k ≤ m. Thus, each function Fi(x1) is a linear combination of
such expressions – and is, thus, a polynomial – and a polynomial of order ≤ m.

5◦. Now we know for each combination of x2, . . ., the dependence on x1 is
a polynomial of order ≤ m. The coefficients of this polynomial, in general,

depend on the values x2, x3, . . . So, if we fix the values x
(0)
3 , . . . , x

(0)
n , then for

the corresponding function Hi(x1, x2) = fi

(
x1, x2, x

(0)
3 , . . . , x

(0)
n

)
, we have

Hi(x1, x2) = a0(x2) + a1(x2) · x1 + . . . am(x2) · xm1 . (4)

Similarly, when we fix x1, the dependence on x2 can also be described as a
polynomial of degree ≤ m:

Hi(x1, x2) = b0(x1) + b1(x1) · x2 + . . . bm(x1) · xm2 ,

so

a0(x2)+a1(x2)·x1+. . . am(x2)·xm1 = b0(x1)+b1(x1)·x2+. . .+bm(x1)·xm2 . (5)

To determine m+ 1 coefficients ai(x2), let us select m+ 1 different value of x1:

x
(0)
1 , . . . , x

(m)
1 . Substituting these m + 1 values into the formula (5), we get a

system of m+ 1 linear equations for m+ 1 unknowns ai(x2):

a0(x2) + a1(x2) · x(0)1 + . . . am(x2) ·
(
x
(0)
1

)m
=

b0

(
x
(0)
1

)
+ b1

(
x
(0)
1

)
· x2 + . . .+ bm

(
x
(0)
1

)
· xm2 ;

. . .

a0(x2) + a1(x2) · x(m)
1 + . . . am(x2) ·

(
x
(m)
1

)m
=

b0

(
x
(m)
1

)
+ b1

(
x
(m)
1

)
· x2 + . . .+ bm

(
x
(m)
1

)
· xm2 .

By Cramer’s rule, the solution to this system is a linear combination of the
right-hand sides – which are polynomials in x2 – with coefficients depending on

the values
(
x
(m)
1

)k
(and thus, not depending on x2). A linear combination of

polynomials is also a polynomial. So, all the coefficients ai(x2) are polynomials
and thus, the expression (4) is a polynomial of two variables x1 and x2.
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Similarly, we can prove that it is a polynomial of x1, x2, and x3, etc., until
we prove that each original function fi(x1, . . . , xn) is a polynomial.

6◦. To complete the proof, we must show that the corresponding set of poly-
nomials is equivalent to an ideal of moments. Indeed, let us show that it is
equivalent to the set of all monomials xk1

1 · . . . · xkn
n that are parts of the poly-

nomials fi, plus monomials with k′i ≤ ki for all i.
Of course, if we have all these monomials, then we can get all the polynomials

fi as their linear combinations. So, the only thing we need to prove is that if
we know the value of E[fi], then we know the values E[m] for all monomials
forming fi – as well as for all monomials with k′i ≤ ki. Let us perform this
“separation” variable by variable. Let us start with the variable x1. In terms
of x1 the polynomial fi can be represented as

fi = a0 + a1 + . . .+ am,

where ak combines terms proportional to xk1 . For each such term,

ak(c1 · x1, x2, . . . , xm) = ck1 · ak(x1, . . . , xk).

Due to scale-invariance, for each c1, the function

fi(c1 · x1, x2, . . . , xn) = a0 + c1 · a1 + . . .+ cm1 · am (5)

is a linear combination of the original functions f1, . . . , fm.

We can select m + 1 different values c1: c
(0)
1 , . . . , c

(m)
1 . Substituting these

values into the formula (5), we get a system of m + 1 linear equations with
constant coefficients for m+ 1 unknowns ai:

fi

(
c
(0)
1 · x1, x2, . . . , xn

)
= a0 + c

(0)
1 · a1 + . . .+

(
c
(0)
1

)m
· am;

. . .

fi

(
c
(m)
1 · x1, x2, . . . , xn

)
= a0 + c

(m)
1 · a1 + . . .+

(
c
(m)
1

)m
· am.

A general solution to this system is a linear combination of the left-hand sides.
Since each left-hand side is a linear combination of the original functions fj , we
conclude that all the functions ai are also linear combinations of the original
functions fj .

Each function ai has x1 only in one power. Similarly, we can “split” each
expression ai into sub-expressions corresponding to different powers of x2, etc.
– until we conclude that all the monomials from each original polynomial can
be represented as linear combinations of the original functions fj .

The last thing we need to prove is that if we have a monomial xk1
1 · . . . ·

xkn
n , then for each k′i ≤ ki, we also have a monomial x

k′
1

1 · . . . · x
k′
n

n . Indeed,
due to shift-invariance, with the original monomial xk1

1 · . . . · xkn
n , the shifted

function (x1 + 1)k1 · . . . · (xn + 1)kn is also a linear combination of the original
polynomials fj . The expansion of this function into monomials includes all the
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monomials x
k′
1

1 · . . . · x
k′
n

n with k′i ≤ ki. So, as we have proved earlier, all these
monomials with k′i ≤ ki are also linear combinations of the original functions fj .

The equivalence between the original set and the ideal of moments is thus
proven, and so is the proposition.

Proof of Proposition 5.1: it follows from the Proposition 5.3 (see below).

Proof of Proposition 5.2: it follows from the Proposition 5.4 (see below).

Proof of Proposition 5.3. It is easy to check that variances and covariances
are shift-invariant, and thus, that any combination of variances and covariances
is also shift-invariant.

Let us prove that, vice versa, any shift-invariant combination is a function
of variances and covariances. Indeed, by definition of shift-invariance, the value
of this combination should not change if we shift the original random vector. In
particular, we can shift it by subtracting the means, i.e., by taking ci = −Mi.
Then, for the shifted random variable X ′i = Xi−Mi, the first moments M ′i will
be equal to 0. For the second moments, we have

M ′ij = E[X ′i ·X ′j ] = E[(Xi −Mi) · (Xj −Mj)] =

E[Xi·Xj−Xi·Mj−Mi·Xj+Mi·Mj ] = E[Xi·Xj ]−Mj ·E[Xi]−Mi·E[Xj ]+Mi·Mj .

Here, E[Xi] = Mi and E[Xj ] = Mj , so M ′ij = Mij −Mi ·Mj . For i = j, this is
variance Vi, for i 6= j, this is covariance Cij . Thus, shift-invariance means that

f({Mi}, {Mij}) = f(0, {Vi}, {Cij}).

This proves that this combination depends only on the variances and covari-
ances.

Proof of Proposition 5.4. It is easy to check that coefficients of variation and
of covariance are scale-invariant, and thus, that any combination of coefficients
of variation and covariance is also scale-invariant.

Let us prove that, vice versa, any scale-invariant combination is a function of
coefficients of variation and covariance. Indeed, by definition of scale-invariance,
the value of this combination should not change if we re-scale the original ran-
dom vector. In particular, we can re-scale it by dividing each random variable
by Mi, i.e., by taking ci = 1/Mi. Then, for the re-scaled random variable
X ′i = Xi/Mi, the first moments M ′i will be equal to 1. For the second moments,
we have

M ′ij = E[X ′i ·X ′j ] = E

[
Xi

Mi
· Xj

Mj

]
=
E[Xi ·Xj ]

Mi ·Mj
=

Mij

Mi ·Mj
.

For i = j, since Mii = Vi +M2
i , we get

M ′ii =
Vi +M2

i

V 2
i

=
Vi
M2

i

+ 1 = 1 + CV 2
i .
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For i 6= j, since Mij = Cij +Mi ·Mj , we have

Mij =
Cij +Mi ·Mj

Mi ·Mj
=

Cij

Mi ·Mj
+ 1 = 1 + CVij .

Thus, scale-invariance means that

f({Mi}, {Mij}) = f(0, {1 + CV 2
i }, {1 + CVij}).

This proves that this combination depends only on the coefficients of varia-
tion and covariance.

Proof of Proposition 5.5. It is easy to check that each correlation is shift-
and scale-invariant, and thus, that any function of the correlations is also shift-
and scale-invariant.

Let us prove that, vice versa, any shift- and scale-invariant combination is a
function of correlations. Indeed, due to Proposition 5.3, since this combination is
shift-invariant, it has the form g({Vi}, {Cij}) for some function g. By definition
of scale-invariance, the value of this combination should not change if we re-
scale the original random vector. In particular, we can re-scale it by dividing
each component Xi by the corresponding standard deviation σi, i.e., by taking
ci = 1/σi. After this re-scaling, each difference Xi −Mi is also divided by σi.
So, for thus re-scaled variables, we have

V ′i = E[(X ′i −M ′i)2] = E

[
Xi −Mi

σi
· Xi −Mi

σi

]
=
E[(Xi −Mi)

2]

σ2
i

=
Vi
Vi

= 1

and for i 6= j, we have

C ′ij = E[(X ′i −M ′i) · (X ′j −M ′j)] = E

[
Xi −Mi

σi
· Xj −Mj

σj

]
=

E[(Xi −Mi) · (Xj −Mj)]

σi · σj
=

Cij

σi · σj
= ρij .

Thus, scale-invariance means that g({Vi}, {Cij}) = g({1}, {ρij}).
This proves that this combination depends only on the correlations.

Proof of Proposition 5.6. It is easy to check that skewness is shift- and
scale-invariant, and thus, that any function of skewness is also shift- and scale-
invariant.

Let us prove that, vice versa, any shift- and scale-invariant combination is
a function of skewness. Let us shift X1 by subtracting M1 and then re-scale it
by dividing the resulting difference X1 −M1 by σ1. One can check that for the

resulting random variable X ′1 =
X1 −M1

σ1
, we will have M ′1 = 0, M ′11 = 1, and

M ′111 = µ̃3. Thus, due to shift- and scale-invariance, we have

f(M1,M11,M111) = f(0, 1, µ̃3).

This proves that this combination depends only on the skewness.

Proof of Proposition 5.7 is similar to the proof of Proposition 5.6.
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