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Abstract—For cyber-physical systems, cyber-security is vitally
important. There are many cyber-security tools that make
communications secure – e.g., communications between sensors
and the computers processing the sensor’s data. Most of these
tools, however, are based on RSA encryption, and it is known
that with quantum computing, this encryption can be broken.
It is therefore desirable to use an unbreakable alternative –
quantum cryptography – for such communications. In this paper,
we discuss possible consequences of this option. We also explain
how quantum computers can help even more: namely, they can be
used to optimize the system’s design – in particular, to maximize
its security, and to make sure that we do not waste time on
communicating and processing irrelevant information.

Index Terms—cyber-physical systems, security, quantum cryp-
tography, quantum computations

I. SECURITY OF CYBER-PHYSICAL SYSTEMS:
A QUANTUM CHALLENGE

What are cyber-physical systems: a brief reminder. Many
modern complex systems include both computational parts and
physical parts. For example:
• A power station includes actual electricity generators and

transformers as well as computational devices that control
the generators, transformers, and communications.

• A city-wide system includes computers on all levels, from
microprocessors controlling individual devices to com-
puters providing, e.g., city-wide optimization of trans-
portation flows.

Such systems are known as cyber-physical systems.

For cyber-physical systems, cyber-security is vital. It is
known that many computing system have been successfully
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attacked, with information stolen or corrupted. In general,
cyber-security is an important problem.

This problem is especially vital for cyber-physical systems,
since by hacking into these systems, an adversary can cause
catastrophic damage: e.g., blow up a nuclear power station.

How cyber-security is provided now. In general, there are
two main directions in providing cyber-security of the current
cyber-physical systems. On the one hand, there are consistent
efforts to educate users, so that adversaries will not use
social engineering (as they do now) to penetrate systems.
For this purpose, users should create strong passwords, avoid
disclosing them, never send them by email, etc.

On the technical side, cyber-security is (or at least should
be) provided by making sure that all communications between
sensors and computers (and between computers themselves)
are encrypted.

This encryption is usually based on the RSA algorithm; see,
e.g., [5]. In this algorithm:

• An agent interested in receiving messages selects two
very large (up to 100 decimal digits long) prime numbers
p and q, and sends their product n = p · q openly to
everyone interested.

• Once a recipient knows the value n, he/she can encrypt
any message.

• Any agent who knows the values p and q can decrypt
this message.

• However, without knowing p and q, decryption does not
seem possible.

The security of this algorithm is based on the fact that no
efficient algorithm is known for factoring large integers – other
than trying all possible prime factors from 1 to

√
n, which

would require about 1050 computational steps – more than



the number of moments of time in the Universe; see, e.g., [7],
[30].

Quantum challenge to cyber-security. The main problem
with existing cyber-security is that a quantum algorithm de-
signed by Peter Shor enables us to factor large integers in
feasible time – and thus, to break the RSA encryption; see,
e.g., [26]–[28], [31]. Similar algorithms can break all similar
encryptions algorithms; see, e.g., [26].

This result practically guaranteed that this challenge has to
be taken seriously.
• Before this result, quantum computing was mostly an

academic research topic close to science fiction.
• However, once it turned out that a quantum computer will

enable to us to read all the messages sent so far, all the
governments and all big companies have invested billions
of dollars into development of such computers.

Whoever get there first will be the first to read all the informa-
tion – and thus, to gain a tremendous advantage over others.
As a result, thousands of researchers and practitioners all over
the world are working on designing a quantum computer –
which practically guarantees that it will be eventually built.

It may take 5 years, it may take 20 years, but it will be
built. And so, we must be ready for this challenge.

Quantum cryptography: a secure alternative to RSA en-
coding. The situation with cyber-security is not as gloomy as it
may seem after reading the previous subsection. Yes, quantum
algorithms make RSA vulnerable, but quantum algorithms also
provide an unbreakable (so far) alternative to RSA, called
quantum cryptography; see, e.g., [26], [31].

Another good news is that, in contract to general quan-
tum computing algorithms – most of which cannot yet be
practically implemented – quantum cryptography is perfectly
practical, and it has been implemented. For example:
• for many years already, there is a quantum computing-

protected communication line between the White House
and the Pentagon, and

• a reasonable recent Chinese experiment successfully im-
plements quantum cryptography when communicating
with a satellite several hundred kilometers above the
Earth.

Yet another good news is that not only the current quantum
cryptography algorithm unbreakable, but this algorithm is also,
in some reasonable sense, the best possible (see, e.g., [8]). Not
only it is the best possible for two-agent communication, it is
also clear how to use it in the most efficient way for multi-
agent communications; see, e.g., [22].

What we do in this paper. First, we provide a brief de-
scription of quantum cryptography. Our main objective is
to analyze how quantum cryptography can be implemented
to make cyber-physical systems more secure. We will also
analyze how, more generally, quantum computing can help
in the design of cyber-physical systems – in particular, in
providing their security.

II. QUANTUM CRYPTOGRAPHY: A BRIEF REMINDER

Basic facts from quantum mechanics: a brief reminder.
In quantum mechanics (see, e.g., [7], [30]), in addition to the
usual classical states s1, . . . , sn, we also have superpositions,
i.e., states of the type

s = c1 · |s1〉+ . . .+ cn · |sn〉,

where c1, . . . , cn are complex numbers for which

|c1|2 + . . .+ |cn|2 = 1.

These states can be viewed as vectors (c1, . . . , cn) in the
n-dimensional complex-valued vector space Cn. In particu-
lar, each of the original states si corresponds to a vector
(0, . . . , 0, 1, 0, . . . , 0) with 1 in the i-th place.

If, for a system in this state, we perform a measurement
to determine in which of the states s1, . . . , sn is this system,
then we will get:
• the state s1 with probability |c1|2,
• . . . , and
• the state sn with probability |cn|2,

where |c| is an absolute value of a complex number: for a
complex number c = a + b · i (where i denotes

√
−1), the

absolute value is defined as |c| =
√
a2 + b2.

Each probability can be alternatively described as |〈s, si〉|2.
Here, the scalar (= dot) product 〈a, b〉 of two complex-valued
vectors (a1, . . . , an) and (b1, . . . , bn) is defined in the usual
way, as

〈a, b〉 = a1 · b∗1 + . . .+ an · b∗n,

where a∗ means complex conjugate, i.e., an operation that
transforms each complex number z = a+b·i into z∗ = a−b·i.

The probabilities of getting n possible outcomes should add
up to 1, which explains the above constraint

|c1|2 + . . .+ |cn|2 = 1.

After the measurement, if we get the result si, then the
original state s transforms into the state si.

Instead of an instrument for measuring one of the states si,
we can have a different instrument that measures the original
state against a different set of mutually orthogonal vectors
s′1, . . . , s

′
n; in this case, the probability to get the i-th result

when in state s is equal to |〈s, s′i〉|2.

Bits and qubits. The main part of a usual computer is a bit
(which is short of binary digit). A bit can be in two possible
states: 0 and 1. A natural quantum analog of a bit – known
as a quantum bit (qubit, for short) can be in one of the states
c0 · |0〉+c1 · |1〉, with |c0|2+ |c1|2 = 1. Quantum cryptography
uses only four of these states: the two original states |0〉 and
|1〉, and two new states:

|0′〉 def= 1√
2
· |0〉+ 1√

2
· |1〉 and |1′〉 def= 1√

2
· |0〉 − 1√

2
· |1〉.

One can easily check that the two new vectors are orthogonal,
so we can use them for measurement. Let us denote:



• the original basis, consisting of the states |0〉 and |1〉, by
+, and

• the new basis, consisting of the states |0′〉 and |1′〉, by ×.
One can easily check that:
• If we prepare a state in the original + basis, i.e., prepare

a state |0〉 or |1〉, and measure this state with respect to
the same basis, we get exactly the prepared state: 0 or 1.

• Similarly, if we prepare a state in the × basis, i.e., prepare
a state |0′〉 or |1′〉, and we measure this state with respect
to the same basic, we also get back the prepared state.

On the other hand:
• If we prepare a state in the + basis and measure it in the
× basis, then we get either 0 or 1 with probability 1/2.

• Similarly, we prepare a state in the × basis and measure
it in the + basis, then we get either 0 or 1 with
probability 1/2.

Now, we are ready to describe the quantum cryptography
algorithm.

Quantum physics naturally leads a random number gen-
erator. The quantum cryptography algorithm uses a random
number generator that produces either 0 or 1 with probabil-
ity 1/2.

With quantum physics, there is no need – as many comput-
ers do now – to use pseudo-random numbers, i.e., numbers
that are generate by a complex algorithm. Indeed, in quantum
physics – as we have just saw – there are plenty of processes
that produce actually random results.

Quantum cryptography algorithm: first step. Let us show
how the random number generator can be used if an agent A
wants to send a message x consisting of m bits x1, . . . , xm

to another agent B.
First, for some integer n (to be described later), A runs a

random generator 2n times, and generates 2n random numbers
a1, . . . , an, an+1, . . . , a2n. Here:
• the values a1, . . . , an will be used as bits to be sent, and
• the values an+1, . . . , a2n will be used to decide which

basis we use.
Specifically:
• if an+i = 0, A will use the + basis to send the i-th bit,

and
• if an+i = 1, A will use the × basis to send the i-th bit.

Then, for each i from 1 to n, A sends to B the bit ai encoded
in the basis an+i, i.e.:
• if ai = 0 and an+i = 0, A sends the state |0〉;
• if ai = 0 and an+i = 1, A sends the state |0′〉;
• if ai = 1 and an+i = 0, A sends the state |1〉; and
• if ai = 1 and an+i = 1, A sends the state |1′〉.

The agent B also runs a random number generator, but only
n times and gets the values b1, . . . , bn. For each bit i, B uses
the measurement corresponding to the value bi, i.e.:
• if bi = 0, B measures the i-th signal in the + basis, and
• if bi = 1, B measures the i-th signal in the × basis.

B then records the measurement results m1, . . . ,mn.

Second step. After B finishes the measurement process,
A openly sends, to B, all the values an+1, . . . , a2n that
describe the basis of the sent signal. For some number c of
these indices, A also sends the original values ai.

In half of the cases, the sending and measuring basis
coincide, i.e., an+i = bi. So, as we have mentioned earlier,
for these values i, the measurement result should reconstruct
the original signal, i.e., we will have mi = ai. In particular,
this should happen for approximately c/2 of the indices for
which A sent the values ai.

If for some of these i, we have mi 6= ai, this means that
something interfered with the communication process, i.e., that
we have an eavesdropper. Vice versa, suppose that there is
an eavesdropper who listens to the conversation – i.e., who
measures the signals while they go from A to B. Then, since
the eavesdropper does not know the orientation an+i, in half
of the cases, its measurement basis will be different from the
one used for sending. For such i, the transmitted signal will
be changed – so after B’s measurement, instead of the original
signal ai, we will have 0 or 1 with equal probability.

So, if there is an eavesdropper, then, out of c bits:

• for half of them, i.e., for c/2 bits, the signal will be
changed;

• thus, for a half of this half – i.e., for c/4 bits – we will
get ai 6= mi.

For large c, there is a high probability that at least in one of
these cases, we will have ai 6= mi. Thus, with high probability,
the eavesdropper will be detected.

If there is an eavesdropper, then we need to physically
inspect the communication path.

Comment. Remember that in our case, we do not talking about
sending a signal several hundred kilometers into space. We are
talking about short-distance communications: from the reactor
to the control room, from the in-city weather sensor to the in-
city computer, etc.

In such cases, the path can be physically inspected.

Third step. If no eavesdropper was detected, then the agent
B sends, to A, the list of al the values i1, . . . , im for which
an+i = bi (with the exception of those indices for which ai
was sent by A via an open channel). For all these indices, we
have ai = mi.

There are approximately m ≈ n/2−c/2 such indices. Now,
both A and B know m ≈ n/2 − c/2 values aik = mik , k =
1, . . . ,m that no one else knows. These values can be used
for the final step.

Final step. The agent A send m bits yk = xk ⊕ aik , where
a⊕b is exclusive “or”, or, what is the same, addition modulo 2:

0⊕ 0 = 0, 0⊕ 1 = 1⊕ 0 = 1, and 1⊕ 1 = 0.

This operation is associative and has the property that b⊕b = 0
for all b. Thus, we always have

(a⊕ b)⊕ b = a⊕ (b⊕ b) = a⊕ 0 = a.



Since aik = mik for all k, this means that upon receiving
these encrypted bits, B can easily decrypt them as

xk = yk ⊕mik .

The secure communication is completed.

So how do we select n? The only thing about the algorithm
that we did not describe yet is how to select n. The above
description leads to the following procedure for selecting n:
• First, we select c based on the degree of confidence that

we want to have that there is no eavesdropper.
• Then, we select n for which m = n/2 − c/2, i.e., we

select n = 2m+ c.

III. HOW QUANTUM CRYPTOGRAPHY CAN HELP
CYBER-SECURITY OF CYBER-PHYSICAL SYSTEMS:

ANALYSIS

Main idea. The main idea of using quantum cryptography
in cyber-physical systems is straightforward: all the com-
munications between sensors and computers (and between
computers themselves) must be encrypted by using quantum
cryptography.

Important issue. As we can see from the above description
of quantum cryptography, there is an important issue with its
practical implementation. Indeed:
• Traditional communication means sending bits. A simple

cable can easily send hundreds of millions of bits per
second.

• In contrast, quantum cryptography means sensing qubits,
i.e., quantum states. This is not so easy, and the current
speed with which we can send qubits is many orders of
magnitude smaller. As a result, we cannot send as much
information from the sensors as we send now.

How to deal with this issue. At present, since communica-
tions are fast, we usually send raw data from the sensors to
the processors. If we switch to quantum cryptography, we will
not be able to send as much data as before. Thus, if we want
to still send all the information, we need to first compress the
raw data, so that sending this information would require fewer
bits.

Compression requires a significant amount of computational
power. For example, the best known image compression al-
gorithms – as implemented in the JPEG’2000 standard [29]
and its modifications (see, e.g., [16]) – are based on using
wavelets (see, e.g., [2], [3] and references therein). There are
many algorithms that provide fast computations with wavelets,
such as Fast Wavelet Transform, but still, these algorithms are
beyond the ability of simple processors usually embedded in
sensors. Even more sophisticated algorithms are needed if we
want to implement 3-D generalizations of wavelet compression
algorithms; see, e.g., [4], [12]–[15], [17]–[20], [23], [25].

So, to make sure that the quantum-related cyber-security
enhancement works for cyber-physical systems, we must add,
to each sensor, computational power – with an embedded
efficient compression algorithm.

IV. HOW QUANTUM ALGORITHMS IN GENERAL CAN
HELP IN DESIGNING CYBER-PHYSICAL SYSTEMS

Do we need all the sensor data? At present, sensors are
cheap, communication is cheap. As a result, when designing
a system, we add as many sensors as possible, even though
some of the information may be duplicate – or even irrelevant.

For example, when we predict weather, we try our best to
use as much information about the current weather as possible.
In practice, data from reasonably faraway regions is rarely
useful for predicting next day’s weather, since weather changes
rarely travel fast. However, it is easier to just add a few
extra sensors than to perform a detailed and time-consuming
analysis of which locations are relevant and which are not.

This issue becomes important if we use quantum com-
munications. When we switch to quantum communications,
communication becomes slower and more expensive. It is
therefore desirable to detect which data points are relevant
and which are not.

In this analysis, quantum computing can help. Interestingly,
quantum computing can help in this analysis. Namely, there
are quantum algorithms – such as the Deutsch-Jozsa algorithm
– that help us decide where certain bits are relevant; see, e.g.,
[6], [22].

The most impressive example is an algorithm for the case
when the input has only 1 bit, i.e., when the data processing
algorithm computes the function f(x) of an 1-bit data x. In
this case, the question is whether this bit is relevant at all:
• if it is not relevant, this would mean that the result f(x)

of the computation does not depend on x at all, i.e., that

f(0) = f(1);

• if the input bit is relevant, then we will have f(0) 6= f(1).
In non-quantum computing, the only way to check whether
f(0) = f(1) is:
• to apply the algorithm f to 0 and to 1 and
• to compare the results of these two applications.

This 2-calls-to-f idea sounds simple until we realize that the
algorithm f may be very complicated: e.g., algorithms for
weather prediction usually take hours on a high performance
computer.

With this in mind, quantum computing indeed helps:
namely, by using quantum computing, we can check whether
f(0) = f(1) in only one call to f . In this call, the input will be
neither 0 not 1 but rather a superposition of these two states.

Comment. It is worth mentioning that, as shown in [24], the
current quantum scheme for checking whether f(0) = f(1)
is, in effect, the only possible one.

Other possible applications of quantum computing to
cyber-physical systems and their security. In designing a
cyber-physical system – and, in particular, in designing cyber-
security part of the system – we try to find a design d that
satisfies certain specifications. In some cases, there are efficient
algorithms for finding such a design, However, in many other



cases, we have to use methods similar to exhaustive search:
let the computer try all possible options until we find one that
satisfies the desired specifications.

In this search, quantum computing can help. Indeed:

• If we need to look through N possible options, then
in non-quantum computing, we need to perform, in the
worse case, N computational steps – by looking at all
these options (and, on average, we need N/2 steps).

• Interestingly, a quantum algorithm proposed by Grover
[10], [11], [26] enables us to find the desired alternative
in
√
N steps.

For large N , this is much much faster: e.g., when N ≈ 106,
the quantum search is three orders of magnitude faster.

Comment about parallelization. An additional speed-up can be
obtained if we parallelize the algorithm, i.e., if we have several
computers working in parallel. Parallelization necessitates
sending preliminary results from one computer to another. As
we already know, for quantum computing, communication is
not as easy as in the non-quantum case. Good news is that
there is an efficient quantum method of sending signals with-
out a need for quantum channels. This method is known by
a somewhat misleading science-fiction name of teleportation;
see, e.g., [26].

It is worth mentioning that, similar to the uniqueness of the
Deustch-Jozsa algorithm, it is possible to show that the usual
teleportation algorithm is, in some reasonable sense, unique –
and thus, cannot be further improved.

What about optimization. Usually, there are several different
designs that satisfy all the given constraints. In such situations,
it is desirable to select the best of these designs. In precise
terms, this means that:

• the user has to provide us with an objective function F
that described the quality of each design d, and

• we should select the design with the largest possible value
of F (d).

It should be mentioned that for complex systems, we rarely
know the exact consequences of selecting each alternative.
At best, we know these consequences with some accuracy ε.
Thus:

• we are not looking for the exact maximum of the objec-
tive function F (d),

• it is sufficient to look for a design which is ε-close to
this maximum m

def
= max

d
F (d).

In finding such an optimal design, quantum computing can
also help; see, e.g., [1]. Indeed, usually, we know the range
[F , F ] of possible values of the objective function. For each
value F from this range, we can use the Grover’s algorithm,
and in time

√
N , either find a design for which F (d) ≥ F or

conclude that there is no such design.
This possibility leads to the following bisection algorithm

for finding a narrow interval [M,M ] that contains m:

• We start with the interval [M,M ] = [F , F ].

• On each step, we compute the midpoint M =
M +M

2
,

and use Grover’s algorithm to check whether there exists
a design d for which F (d) ≥M .

• If such a design exists, this means that m ≥ M , so we
can conclude that m ∈ [M,M ], and we can take [M,M ]
as the new value of the interval containing the actual
maximum m.

• If such a design does not exist, we conclude that m ∈
[M,M ], and we can take [M,M ] as the new value of
the interval containing the actual maximum m.

• In both cases, we decrease the width of the interval
[M,M ] by half.

• We stop this procedure when the width of the interval
[M,M ] becomes smaller than or equal to ε. In this
case, since this interval contains the actual (unknown)
maximum m, we can conclude that all the values M from
this interval are ε-close to this maximum m.

• We know that there is a design d for which F (d) is
in the final interval [M,M ], so we can use Grover’s
algorithm to find one of such designs. The value F (d)
corresponding to this design will indeed be ε-close to the
actual (unknown) maximum m.

How many steps do we need?
• We start with an interval [F , F ] of width F − F .
• On each step, we divide the width by half.
• So, in k steps, we get the width 2−k · (F − F ).
• To reach width ≤ ε, we need

k =

⌈
log2

(
F − F

ε

)⌉
,

where dxe denotes the smallest integer which is greater
than or equal to x.

Each iteration involves using Grover’s algorithm and thus,
requires

√
N steps. So overall, we need k ·

√
N steps.

As we have mentioned earlier, usually, the accuracy with
which we know the consequences of each selection is not so
good. So, the value ε is not very small and thus, the number
k of iterations is small. Thus, by using this algorithm, we
get almost the same speed-up in comparison with the N -step
exhaustive search as for Grover’s algorithm itself.
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