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How to Gauge the Quality of a Testing Method When Ground

Truth Is Known with Uncertainty

Nicholas Gray1, Scott Ferson1, and Vladik Kreinovich2
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Liverpool L69 7ZF, UK

Nicholas.Gray@liverpool.ac.uk, sandp8@gmail.com
2Department of Computer Science

University of Texas at El Paso
El Paso, TX 79968, USA, vladik@utep.edu

Abstract. The quality of a testing method is usually measured by using sensitivity, specificity,
and/or precision. To compute each of these three characteristics, we need to know the ground truth,
i.e., we need to know which objects actually have the tested property. In many applications (e.g., in
medical diagnostics), the information about the objects comes from experts, and this information
comes with uncertainty. In this paper, we show how to take this uncertainty into account when
gauging the quality of testing methods.

Keywords: sensitivity, specificity, precision, unknown ground truth

1. Formulation of the Problem

Quality of testing methods. For many properties – e.g., for different diseases – we have different
resting methods. These methods are rarely perfect. For example, for medical tests:

− sometimes, the test missed a disease, and

− sometimes, the test return an alarming result even when the patient does not have the
corresponding disease.

To gauge the quality of a testing method – and to compare the quality of different testing
methods – several characteristics are used. The most widely used are sensitivity, specificity, and
precision; see, e.g., (Sheskin, 2011). In order to describe these characteristics, let us introduce the
corresponding notations.

Notations and comments.

− Let P denote the set of all the objects from the tested sample that actually have the tested
property (e.g., the set of all the people in the sample who actually have the tested disease).

− Let N denote the set of all the objects from the tested sample that do not have the tested
property (e.g., the set of all the people in the sample who do not have the tested disease).

c© 2020 by authors.
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− Let S+ denote the set of all the objects for which the test concluded that they have the tested
property (e.g., the set of all the people who the test classified as having the tested disease).

− Let S− denote the set of all the objects for which the test concluded that they do not have
the tested property (e.g., the set of all the people who the test classified as having the tested
disease).

A perfect test should classify all the objects that actually have this property – and only these
objects – as having the tested property. So, for a perfect test, we should have P = S+, and,
correspondingly, N = S−. In reality, as we have mentioned, tests are not perfect, so we may have
misclassified objects. The usual characteristics for gauging the quality of a testing method use the
numbers of objects with or without the tested property that were classified correctly or incorrectly.
In general, the number of elements in a set S will be denoted by |S|.

Let us now describe the usual characteristics.

Sensitivity. The first of the three characteristics is sensitivity. It is also known as recall or True
Positive Rate – TPR for short. In the formulas in this paper, we will use the abbreviation TPR to
describe sensitivity.

Sensitivity is defined as the proportion, among all the objects with the tested property, of the
ones that were correctly classified by the test: e.g., the proportion of sick people for which the test
recognized the disease.

In terms of our notations, the set of objects that have the tested property is P . The number
of elements in this set is |P |. Among these objects, the set of all objects that have been correctly
classified by the testing method is the intersection P ∩ S+ of the set P and the set S+ of all the
objects that were classified by the testing method as having the property. The number of such
objects is equal to |P ∩ S+|. Thus, the sensitivity is equal to

TPR =
|P ∩ S+|
|P |

. (1)

Specificity. The second of the three most used characteristics is specificity. It is also known as
True Negative Rate – TNR, for short. In the formulas in this paper, we will use the abbreviation
TNR to describe specificity.

Specificity is defined as the proportion, among the objects that do not have the tested property,
of the ones that were correctly classified by the test: e.g., the proportion of healthy people that this
test classified as healthy.

In terms of our notations, the set of objects that do not have the tested property is N . The
number of elements in this set is |N |. Among these objects, the set of all objects that have been
correctly classified by the method is the intersection N ∩ S− of the set N and the set S− of all the
objects that were classified by the testing method as not having the property. The number of such
objects is equal to |N ∩ S−|. Thus, the specificity is equal to

TNR =
|N ∩ S−|
|N |

. (2)
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Precision. The final of the three characteristics is precision. It is also known as Positive Predictive
Value – PPV, for short. In the formulas in this paper, we will use the abbreviation PPV to describe
precision.

Precision is defined as the proportion, among object that the test classified as having the tested
property, of the objects who actually have this property – e.g., the proportion of sick people among
those that the test classified as sick.

In terms of our notations, the set of objects that were classified as having the property is S+.
The number of elements in this set is |S+|. Among these objects, the set of all objects that actually
have the tested property is the intersection P ∩ S+ of the set S+ and the set P of all the objects
that actually have the tested property. The number of such objects is equal to |P ∩ S+|. Thus, the
precision is equal to

PPV =
|P ∩ S+|
|S+|

. (3)

How can we use these characteristics to compare different testing methods. For each of
the three characteristics, the larger the value of the characteristic, the better – and in the prefect
case, all three characteristics are equal to 1. From this viewpoint, a reasonable way to compare
different testing methods is to compare the values of one or more of the three characteristics: if for
one of the methods, the corresponding value is larger, this means that, from the viewpoint of this
characteristic, this method is better.

Comment. Of course, to make a definite conclusion about which testing method is better, we need
to take into account that the values of each characteristic come from a finite sample and are,
thus, only an approximate representation of the actual quality of a testing method. For the same
method, for different random samples, we can get slightly larger or slightly smaller values of the
corresponding characteristic.

So, strictly speaking, to make a definite conclusion that one of the testing methods is better, we
need to check that the difference between the values of the characteristic is statistically significant.
There are known statistical procedures for checking this.

This is especially important to take into account when the sample sizes are small. When the
sample sizes are large, the corresponding randomness becomes very small.

Important problem: often, we do not know the “ground truth”. The formulas for com-
puting the above three characteristics assume that we know know the “ground truth”, i.e., that we
know exactly:

− which objects have the tested property and

− which objects do not have this property.

In the above example, which patients have the tested disease.
In practice, however, this information often comes from experts – e.g., from medical doctors –

and experts are often not 100% sure about their statements and their diagnoses.
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How can we take this expert uncertainty into account when gauging the quality of a test? This
is the problem that we address in this paper.

2. How to Describe Expert’s Uncertainty

Need for subjective probability. For each object i, an expert makes:

− either a statement that the object has the tested property,

− or a statement that the object does not have the tested property.

In both cases, the expert is usually not absolutely confident in his/her statement.
Since the whole procedure is based on statistics, it is reasonable to try to gauge the expert’s

degree of certainty ci in his or her statement by a probability value. Once we know this degree of
certainty, then:

− If the expert believes that the object i most probably has the tested property, then the
probability pi that this object has the tested property is equal to pi = ci. Correspondingly, the
probability that the object i does not have the tested property is equal to 1− ci.

− If the expert believes that the object imost probably does not have the tested property, then the
probability that this object does not have the tested property is equal to ci. Correspondingly,
the probability that the object i has the tested property is equal to pi = 1− ci.

Comment. Probability values describing expert’s degree of confidence are known as subjective prob-
abilities – to distinguish them from usual (objective) probabilities, that describe the frequency with
which certain events occur. For example, the fact that the probability 1/2 of the coin falling heads
means that, in general, the coin will fall heads in half of the cases.

How do we get subjective probabilities? Where can we get the subjective probabilities from?
A natural idea is to ask the experts. Sometimes, they are able to gauge their own degrees of certainty
by providing the corresponding number.

What is the expert cannot provide such probabilities – but we have a record of the ex-
pert’s past estimates. In many cases, the expert cannot meaningfully provide the corresponding
subjective probabilities. How can we then gauge the expert’s uncertainty?

One possible approach is to use the above analogy between subjective and objective probabilities.
If we have a record of past estimates of the same expert, estimates for which we actually know
the ground truth, then, for this expert, we can estimate our degree of confidence ci in this expert’s
statement as the proportion of cases in which the expert turned out to be right. For example, if in
the past, the medical doctor was right 80% of the time, we take ci = 0.8.

Sometimes, we cannot do this for each individual expert, but we can estimate the overall
subjective probability c of experts. The confidence c is usually close to 1, to it makes sense to
represent it as c = 1 − ε for some small ε > 0. In this case, we take pi = c = 1 − ε is the experts
believe that the i-th object has the tested property, and pi = 1− c = ε if they don’t.
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What can we do in all other cases? But what if an expert cannot estimate his/her degree of
confidence by a number, and we do not have the record of this expert’s past estimates. How can
we then estimate the expert’s degree of confidence?

To do that, we can use standard techniques from decision theory; see, e.g., (Fishburn, 1969;
Luce and Raiffa, 1989; Raiffa, 1997; Nguyen, Kosheleva, and Kreinovich, 2009; Kreinovich, 2014).
According to decision theory, to estimate the expert’s certainty in a statement S, we can ask this
expert to compare, for different values p from the interval [0, 1], the following two alternatives:

− getting a certain reward (e.g., $100) with probability p, or

− getting the exact same reward if the statement S turned out to be true.

Clearly:

− If the expert prefers the first alternative, this means that his/her subjective probability of S
is smaller than p.

− If the expert prefers the second alternative, this means that his/her subjective probability of
S is larger than p.

We can use following bisection procedure to find the corresponding subjective probability. In the
beginning, all we know about the subjective probability p is that it is located somewhere in the
interval [p, p] = [0, 1]. At each stage of this process, we will decrease the size of this interval by half.
This can be done as follows.

Suppose that at some stage, we have an interval [p, p]. Then, on the next stage, we compute the
midpoint

pm =
p+ p

2
and ask the expert to compare the alternative “reward with probability pm” with the alternative
“reward if S is true”.

− If the expert prefers the alternative “reward with probability pm”, this means that his/her
subjective probability is smaller than pm. Since we already know that the subjective probability
p is in the interval [p, p] and is, thus, larger than or equal to p, we can thus conclude that p is
in the interval [p, pm].

− If the expert prefers the alternative “reward is S is true”, this means that his/her subjective
probability is larger than pm. Since we already know that the subjective probability p is in the
interval [p, p] and is, thus, smaller than or equal to p, we can thus conclude that p is in the
interval [pm, p].

In both cases, we get an interval of half-size that contains the actual subjective probability. We
start with an interval of width 1. In the first step, we decrease the width of the interval to 1/2, in
2 steps to 1/4, . . . , and in k steps, we get an interval of width 2−k. If we take a midpoint of this
interval, this midpoint represents the subjective probability with accuracy 2−(k+1).

This way, after a small number of iterations, we get the subjective probability with a reasonably
high accuracy. In particular:
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− in 3 steps – i.e., by asking 3 questions to the expert – we estimate the subjective probability

with accuracy 2−4 =
1

16
< 10%;

− in 6 steps – i.e., by asking 6 questions to the expert – we estimate the subjective probability

with accuracy 2−7 =
1

128
< 1%; and

− in 9 steps – i.e., by asking 9 questions to the expert – we estimate the subjective probability

with accuracy 2−10 =
1

1024
< 0.1%.

Summarizing. By using one of the above methods, we can estimate, for each object i, the expert’s
degree of confidence ci in his or her statement about this object. Depending on whether this
statement was positive or negative, we can then estimate the expert’s subjective probability pi that
the i-th object has the tested property:

− if the expert believes that most probably the object has the tested property, then we take
pi = ci, and

− if the expert believes that most probably the object does not have the tested property, then
we take pi = 1− ci.

In some cases, instead of individual values pi for each i, we only know the overall degree of
confidence c = 1− ε in the expert’s statement. In this case:

− if the expert believes that most probably the object has the tested property, then we take
pi = c = 1− ε, and

− if the expert believes that most probably the object does not have the tested property, then
we take pi = 1− c = ε.

Let us now show how we can use these subjective probabilities pi.

3. How to Take Expert’s Uncertainty into Account: General Analysis

Notations. Let us first introduce some additional notations.
Let us denote:

− by E+ the set of all the objects that, according to the experts, most probably have the desired
property, and

− by E− the set of all the objects that, according to the experts, most probably do not have the
desired property.

In general, due to the expert uncertainty:
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− the set E+ may be different from the set of P of the objects that actually have the tested
property, and

− the set E− may be different from the set of N of the objects that actually do not have the
tested property.

Let n denote the overall number of tested objects. In terms of our previous notations,

n = |P |+ |N | = |E+|+ |E−| = |S−|+ |S+|.

Let us enumerate these objects by numbers from 1 to n. In these notation, all the sets that considered
earlier – namely, the sets P , N , S−, and S+ and their intersections – become subsets of the
sample {1, . . . , n}.

Let χP (i) denote the characteristic function of the set P of all the objects that actually have
the tested property, i.e.:

− if the object i has the tested property, then χP (i) = 1, and

− if the object i does not have the tested property, then χP (i) = 0.

General analysis of the problem. We consider situations in which we do not know for sure
whether the i-th object has the tested property or not. All we know, based on the expert’s estimate,
is that this happens with probability pi. In other words, the value χP (i) is a random variable:

− with probability pi, we have χP (i) = 1, and

− with the remaining probability 1− pi, we have χP (i) = 0.

In statistics, for each random variable η, a reasonable idea is to compute its mean E[η] and its
variance V [η]– and, as we will see later, this is useful in our case as well. For the random variable
χP (i), we have

E [χP (i)] = pi · 1 + (1− pi) · 0 = pi

and
V [χP (i)] = E

[
(χP (i)− E [χP (i)])2

]
= pi · (1− pi)2 + (1− pi) · (0− pi)2 =

pi · (1− pi)2 + (1− pi) · p2i = pi · (1− pi) · [(1− pi) + pi] = pi · (1− pi).
We can use these results to answer, e.g., a question of how many objects actually have the desired

property, i.e., what is the number of elements |P | in the set P . This number can be obtained if we
consider all the elements from the sample {1, . . . , n} one by one, and add 1 every time we have an
element from the set P , i.e., every time when χP (i) = 1. If the element i does not belong to the set
P (i.e., when χP (i) = 0), then we do not add anything – which is also equivalent to adding χP (i).
So, we can describe the above procedure as simply adding all the values χP (i) corresponding to all
n objects. As a result, we get the value

|P | =
n∑

i=1

χP (i). (4)
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To be able to get a good estimate of the test’s quality, we need to test a sufficiently large number
of objects. Thus we can conclude that the number n is large. So, the above sum (4) is the sum of
a large number of small independent random variables.

It is reasonable to assume that the estimates corresponding to different objects – and often
produced by different experts – are statistically independent. It is known that, due to the Central
Limit Theorem, the distribution of such sums is close to Gaussian; see, e.g., (Sheskin, 2011). Thus,
it is reasonable to assume that PPV is normally distributed. Its mean is equal to the sum of the
means, i.e.,

E[|P |] =
n∑

i=1

pi.

For the sum of independent random variables, the variance is equal to the sum of the variables,
so we have

V [|P |] =
n∑

i=1

pi · (1− pi).

Now, we are ready to analyze how the expert’s uncertainty affect the values of the three
characteristics. We will start with the case of precision, which turns out to be the easiest to analyze.

4. Estimating Precision: Analysis of the Problem

General case. According to the formula (3), precision PPV is defined as the ratio of |P ∩ S+| to
|S+|. The set S+ of all the objects that the test classifies as having the tested property does not
depend on expert estimates. The only thing that, in this formula, depends on the expert estimates,
is the value |P ∩ S+| – since it depends on which objects actually have this property or not, and
our only information about this comes from the experts.

Similarly to the previous section, we can conclude that

|P ∩ S+| =
∑
i∈S+

χP (i).

Thus, we have

E [|P ∩ S+|] =
∑
i∈S+

pi

and
V [|P ∩ S+|] =

∑
i∈S+

pi · (1− pi).

When we divide a random variable by a constant (in this case, by |S+|), then the mean value divides
by the same constant, while the variance divides by the square of this constant. So, we have

E[PPV] =
1

|S+|
·
∑
i∈S+

pi (5)
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and

V [PPV] =
1

|S+|2
·
∑
i∈S+

pi · (1− pi). (6)

Case when we only know the overall degree of confidence c = 1−ε in expert statements.
In this case, we have pi = 1− ε if i ∈ E+ and pi = ε if i ∈ E−. Thus:∑

i∈S+

pi =
∑

i∈S+∩E+

(1− ε) +
∑

i∈S+∩E−

ε = |S+ ∩ E+| · (1− ε) + |S+ ∩ E−| · ε.

Here, |S+ ∩ E−| = |S+| − |S+ ∩ E−|, so∑
i∈S+

pi = |S+ ∩ E+| · (1− 2ε) + |S+| · ε.

Therefore,

E[PPV] = (1− 2ε) · |S+ ∩ E+|
|S+|

+ ε. (7)

Similarly, we have pi · (1− pi) = ε · (1− ε), so
∑

i∈S+

pi · (1− pi) = |S+| · ε · (1− ε), and the formula (6)

takes the form

V [PPV] =
ε · (1− ε)
|S+|

. (8)

Based on precision, when can we say that one testing method is better than the other
one? To compare two different methods, with means E[PPV1] and E[PPV2] and variances V [PPV1]
and V [PPV2], we can use the usual technique for comparing two random variables, and conclude
that the difference between PPV1 and PPV2 if

E[PPV1]− E[PPV2] ≥ t ·
√
V [PPV1] + V [PPV2], (9)

for an appropriate t (the value t depends on the desired confidence level).

5. Estimating Precision: Results

General conclusion. If we take into account expert uncertainty, then PPV – as well as two other
characteristics – becomes a random variable.

General case. If we know, for each object i, the subjective probability pi that this object has
the tested property, then the mean and variance of PPV can be determined by using formulas (5)
and (6).

Case when we only know the overall degree of confidence c = 1−ε in expert statements.
In this case, we can estimate the mean nd variance of PPV by using formulas (7) and (8).

Comments.
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− The formula (7) can be reformulated as follows: we take the value that we would have obtained
if we did not take expert uncertainty into account, multiply it by 1 − 2ε, and add ε to the
resulting product.

− Strictly speaking, to the variance values estimated by using formulas (6) and (8), we should add
the variances caused by the fact that we are estimate PPV based on the finite sample. Since the
expert uncertainty and the uncertainty caused by the finiteness of the sample are independent,
to get the overall variance, we should simply add the new expression to the variance to the
known expressions corresponding to sample finiteness.

How do we decide which testing method is better. To decide whether one testing method
is statistically significantly better than another one, we use the formula (9) with an appropriate
value t.

6. Estimating Sensitivity: Analysis of the Problem

General case. In terms of the values χP (i), the actual value of the sensitivity is

TPR =

∑
i∈S+

χP (i)

n∑
i=1

χP (i)

.

Here,
n∑

i=1

χP (i) = Σ+ + Σ−,

where we denoted Σ+
def
=

∑
i∈S+

χP (i) and Σ−
def
=

∑
j∈S−

χP (j). Since these two sums contain different

random variables χP (i) and χP (j), and we assumed that all the variables χP (i) an χP (j) are
independent, the sums Σ+ and Σ− are independent as well. Thus

TPR =
Σ+

Σ+ + Σ−
. (10)

Here, similarly to the case of precision, we can conclude that both Σ+ and Σ− are independent
(approximately) Gaussian random variables, with means

E[Σ+] =
∑
i∈S+

pi and E[Σ−] =
∑
j∈S−

pj (11)

and variances
V [Σ+] =

∑
i∈S+

pi · (1− pi) and V [Σ−] =
∑
j∈S−

pj · (1− pj). (12)
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We can thus find the mean and standard deviation of TPR if we simulate two Gaussian random
variables Σ+ and Σ−, then compute the ratio (10) for each simulation, and compute the mean and
average of these simulation results.

Case when we only know the overall degree of confidence c = 1−ε in expert statements.
In this case, the formulas (11) and (12) take the following form:

E[Σ+] = (1− ε) · |S+ ∩ E+|+ ε · |S+ ∩ E−| and E[Σ−] = (1− ε) · |S− ∩ E+|+ ε · |S− ∩ E−|; (13)

V [Σ+] = ε · (1− ε) · |S+| and V [Σ−] = ε · (1− ε) · |S−|. (14)

How do we decide which testing method is better. For each characteristic X, we can say –
similarly to the formula (9) – that the first testing method is better if

E[X1]− E[X2] ≥ t ·
√
V [X1] + V [X2], (15)

for an appropriate t; the value t depends on the desired confidence level.

7. Estimating Sensitivity: Resulting Algorithm

How to estimate sensitivity of a testing method based on the testing results. First,
depending on whether we know all the values pi for each i or only one value ε, we use either the
formulas (11)–(12) or the formulas (13)–(14) to find the values of the mean and variance of Σ+

and Σ−.
Then, several (K) times we run a usual random number generator for normally distributed

random variables to get N simulated values Σ
(k)
+ and Σ

(k)
− . Based on these simulated values, we use

the formula (10) to estimate the simulated values of TPR as

TPR(k) =
Σ
(k)
+

Σ
(k)
+ + Σ

(k)
−
. (16)

Finally, based on these simulated values, we estimate the mean and variance of TRP in the usual
way, as:

E[TPR] =
1

K
·

K∑
k=1

TPR(k) and V [TPR] =
1

K − 1
·

K∑
k=1

(
TPR(k) − E[TPR]

)2
. (17)

How do we decide which testing method is better. We say that the first testing method is
better if

E[TPR1]− E[TPR2] ≥ t ·
√
V [TPR1] + V [TPR2], (18)

for an appropriate t; the value t depends on the desired confidence level.
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8. Estimating Specificity: Analysis of the Problem and the Resulting Algorithm

Analysis of the problem. In terms of the values χP (i), the actual value of the sensitivity is

TNR =

∑
i∈S−

(1− χP (i))

n∑
j=1

(1− χP (j))

=

|S−| −
∑

j∈S−

χP (j)

n−
n∑

i=1
χP (i)

=
|S−| − Σ−

n− Σ+ − Σ−
. (19)

We already know that Σ+ and Σ− can be viewed as independent normally distributed random
variables, with known means and variances. Thus, we arrive at the following algorithm.

How to estimate sensitivity of a testing method based on the testing results. First,
depending on whether we know all the values pi for each i or only one value ε, we use either the
formulas (11)–(12) or the formulas (13)–(14) to find the values of the mean and variance of Σ+

and Σ−.
Then, several (K) times we run a usual random number generator for normally distributed

random variables to get N simulated values Σ
(k)
+ and Σ

(k)
− .

Up to now, we perform the same computation steps as when estimating sensitivity. Now, the

computations differ. To estimate specificity, based on the simulated values Σ
(k)
+ and Σ

(k)
− , we use

the formula (19) to estimate the simulated values of TNR as

TNR(k) =
|S−| − Σ

(k)
−

n− Σ
(k)
+ − Σ

(k)
−
. (20)

Finally, based on these simulated values, we estimate the mean and variance of TNP in the usual
way, as:

E[TNR] =
1

K
·

K∑
k=1

TNR(k) and V [TNR] =
1

K − 1
·

K∑
k=1

(
TNR(k) − E[TNR]

)2
. (21)

How do we decide which testing method is better. We say that the first testing method is
better if

E[TNR1]− E[TNR2] ≥ t ·
√
V [TNR1] + V [TNR2], (22)

for an appropriate t; the value t depends on the desired confidence level.
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