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Abstract. In many practical applications, it turns out to be efficient to use Sliced-Normal multi-D
distributions, i.e., distributions for which the logarithm of the probability density function (pdf) is
a polynomial – – to be more precise, it is a sum of squares of several polynomials. This class is a
natural extension of normal distributions, i.e., distributions for which the logarithm of the pdf is a
quadratic polynomial.

In this paper, we provide a possible theoretical explanation for this empirical success.

Keywords: sliced-normal distribution, fusion of probabilistic knowledge

1. Formulation of the Problem

Sliced-normal distributions are efficient. In many practical applications, it turns out to be
efficient to use Sliced-Normal multi-D distributions, i.e., distributions for which the logarithm of
the probability density function (pdf) ρ(x1, . . . , xn) is a polynomial (to be more precise, it is a sum
of squares of several polynomials); see, e.g., (Colbert, Crespo, and Peet, 2019; Crespo, 2019; Crespo,
Colbert, Kenny, and Giesy, 2019):

ln(ρ(x1, . . . , xn)) = P (x1, . . . , xn)

for some polynomial P (x1, . . . , xn), so

ρ(x1, . . . , xn) = exp(P (x1, . . . , xn)).

This class is a natural extension of normal distributions, i.e., distributions for which the logarithm
of the pdf is a quadratic polynomial; see, e.g., (Sheskin, 2011).

But why? This is what we try to explain. While the sliced-normal distributions have been
empirically successful, there seems to be no convincing theoretical explanation for their empirical
success. The main goal of this paper is to provide such an explanation.

c© 2020 by authors.
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2. Let Us Formulate This Problem in Precise Terms

Need for a finite-parametric family. In principle, we can have many different probability
density functions. The class of all the functions is infinite-dimensional – which means that, to select
a single probability density function out of all possible such functions, we need to know the values
of infinitely many parameters (e.g., values of the pdf at points with rational coordinates).

In practice, however, at any given moment of time, we only have finitely many observations.
Based on these observations, we can determine only finitely many parameters. Thus, it makes sense
to looks for families F of probability density functions that depend on finitely many parameters
c1, . . . , cm, i.e., on families of the type F = {ρ(x1, . . . , xn, c1, . . . , cm)}c1,...,cm .
The dependence should be continuous. All our information about the physical world comes
from measurements and from expert estimates. Measurements are never 100% accurate (see, e.g.,
(Rabinovich, 2005)), expert estimates are even less accurate. So, we can only determine the values
xi and cj with some accuracy. Based on these approximate values of xi and cj , we should make
estimates of the corresponding values ρ(x1, . . . , xn, c1, . . . , cm) of the probability density – and the
more accurately we perform measurements, the more accurate should be our estimates.

In mathematical terms, this means that the dependence of the function ρ(x1, . . . , xn, c1, . . . , cm)
on all its n+m inputs xi and cj should be continuous.

Moreover, small inaccuracy in xi and cj should lead to proportionally small inaccuracy in the
resulting value of ρ(x1, . . . , xn, c1, . . . , cm). Thus, the function ρ(x1, . . . , xn, c1, . . . , cm) should be
differentiable. Thus, we arrive at the following definition.

Definition 1. Let n and m be positive integers. By an m-parametric family of probability
density functions on IRn (or simply a family, for short), we mean a differentiable function
ρ(x1, . . . , xn, c1, . . . , cm) of n+m variables for which, for each tuple (c1, . . . , cm), the corresponding
function x1, . . . , xn → ρ(x1, . . . , xn, c1, . . . , cm) is a probability density function, i.e.:

− we have ρ(x1, . . . , xn, c1, . . . , cm) ≥ 0 for all xi and cj, and

− we have
∫
ρ(x1, . . . , xn, c1, . . . , cm) dx1 . . . dxn = 1 for all tuples (c1, . . . , cm).

3. The Class of Distributions Should Be Closed Under Fusion

Need for fusion. The very fact that we only know the probability of different tuples x =
(x1, . . . , xn) means that we do not know which of the tuples describe the corresponding real-life
situation. In other words, the fact that we have a probabilistic knowledge means that our knowledge
is incomplete. It is therefore desirable to gain additional knowledge about the situation – either by
performing additional measurements, or by requesting additional expert estimates.

This additional knowledge usually comes in the form of a probability distribution. Once we
have this probability distribution, we need to fuse it with the distribution describing our original
knowledge.

The class of distributions should be closed under fusion. The main objective in selecting
a finite-parametric family of distributions is to come up with a reasonable family, a family that
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describes reasonably well all possible states of our knowledge. From this viewpoint, it is reasonable
to require that:

− if both fused pieces of knowledge are described by distributions from our family,

− then the result of fusing these two pieces of knowledge should also be described by distributions
from our family.

In mathematical terms, this means that the desired family of probability distributions should be
closed under fusion.

To describe this requirement in precise terms, let us describe fusion in precise terms.

How to describe fusion: a natural idea. In probability theory, if we have two independent
events with probabilities p1 and p2, then the probability that both events will happen is equal to
the product of these probabilities. Similarly, if we have two independent sources of information, so
that:

− based on the information from the first source, we assign, to each of N alternatives a1, . . . , aN ,
the probabilities p11, . . . , p1N ,

− based on the information from the second source, we assign, to each ofN alternatives b1, . . . , bN ,
the probabilities p21, . . . , p2N ,

then the probability that we have alternative ai in the first case and alternative bj in the second
case is equal to the product of the corresponding probabilities p1i · p2j .

If it turns out that in both cases, we have the exact same set of alternatives, then we need to
consider conditional probabilities, namely probabilities under the condition that i = j. In general,
the conditional probability P (A |B) of an event A under the conditionB can be obtained by dividing
the probability P (A&B) of A&B by the probability P (B) that the condition B is satisfied.
In our case, this means that after the fusion, the probability of the i-th alternative is equal to

pi = C · p1i · p2i, where the coefficient C
def
=

1

P (B)
can be obtained from the requirement that the

resulting probabilities add up to 1, i.e., that
N∑
i=1

pi = C ·
N∑
i=1

p1i · p2i = 1, so that C =
1

N∑
i=1

p1i · p2i
.

Similar formulas can be obtained for continuous distributions: if we have two independent sources
of information that lead to distributions ρ1(x) and ρ2(x), then the fusion of these two pieces of
information is a probability distribution ρ(x) = C ·ρ1(x)·ρ2(x), where C is a normalization constant

selected so as to guarantee that
∫
ρ(x) dx, i.e., C =

1∫
ρ1(x) · ρ2(x) dx

.

Similarly, we can define the result of fusing several probability distributions.

Definition 2. Let ρ1(x), . . . , ρk(x) be probability density functions (pdfs) on IRn. By the result of

fusing these pfds, we mean a pdf ρ(x) = C · ρ1(x) · . . . · ρk(x), where C =
1∫

ρ1(x) · . . . · ρk(x) dx
.
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Definition 3. We say that the family ρ(x, c) is closed under fusion if for every k pdfs
ρ
(
x, c(1)

)
, . . . , ρ

(
x, c(k)

)
from this family, the result of fusing these pdfs also belongs to the same

family, i.e., has the form ρ(x, c) for some tuple c.

4. Every Piece of Knowledge Can Be Obtained by Fusing Several “Smaller” Pieces
of Information

Main idea. Sometimes, knowledge comes in one big step. However, more typically, to gain the
knowledge, we must acquire it piece by piece, sometimes in two steps, sometimes in three steps,
sometimes in four steps, etc. So, it is natural to come up with the following definition.

Definition 4. We say that in a family ρ(x, c), every piece of knowledge can be obtained by fusing
small pieces of information if for every pdf ρ(x, c) from this family and for every integer M ≥ 2,
there exists another pdf ρ(x, c′) from this family so that fusing M copies of ρ(x, c′) leads to ρ(x, c).

5. The Family of Distributions Should Not Depend on the Choices of Starting
Points and Measuring Units for xi

Possibility to change measuring unit and a starting point. We want to deal with physical
quantities, but in reality, we deal with their numerical values. These numerical values depend on
what measuring unit we use for measuring the quantity, and what starting point we select for this
measurement. When we change the measuring unit and/or the starting point, the numerical values
change.

For example, if we change the measuring unit from meters to centimeters, all the numerical
values are multiplied by 100, so that, 2 m becomes 200 cm. In general, if we change from the
original measuring unit to a new one which is a times smaller, then all the numerical values are
multiplied by a: x→ a · x. This transformation is known as scaling.

Similarly, if we change the starting point to the one which is b units before – as we can do
for time, temperature, and many other quantities – then b is added to all the numerical values
x→ x+ b. This transformation is known as shift. A shift can also be viewed as a kind of re-scaling.

If we change both the measuring unit and the starting point, then numerical value change as
x ·a ·x+ b. These transformations change the pdf: if we had a pdf ρ(x1, . . . , xn), and we apply such

transformation xi → x′i
def
= ai · xi + bi to each of inputs, then in terms of the new numerical values

x′1, . . . , x
′
n, the corresponding pdf takes a different form.

Definition 5. Let ρ(x1, . . . , xn) be a pdf, let a = (a1, . . . , an) be a tuple of positive numbers, and
let b = (b1, . . . , bn) be a tuple of real numbers. By a (a, b)-re-scaling of the pdf ρ, we mean a pdf

ρ′(x′1, . . . , x
′
n) =

1
n∏

i=1
ai

· ρ
(
x′1 − b1
a1

, . . . ,
x′n − bn
an

)
.
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A natural invariance requirement. We want to come up with a universal family of probability
distributions, a family that would be applicable no matter what measuring units and what starting
points we select for all the inputs. Thus, it is reasonable to require that our family is invariant with
respect to the corresponding transformations.

Definition 6. We say that a family F is scale- and shift-invariant if every pdf ρ(x, c) from this
family and for every two tuples a and b, the (a, b)-re-scaling of the pdf ρ(x, c) also belongs to the
family F .

Now, we are ready for formulate and prove our main result.

6. Main Result

Proposition. For every family F :

− which is closed under fusion,

− for which every piece of knowledge can be obtained by fusing small pieces of information, and

− which is scale- and shift-invariant,

there exists an integer d ≤ m+ 1 such that every probability density function from this family has
the form ρ(x, c) = exp(P (x1, . . . , xn)) for some polynomial P (x1, . . . , xn) of degree ≤ d with respect
to each of its variables.

Comment. This result explains the empirical success of sliced-normal distributions.

Proof.

1◦. Let F be the family that satisfies all the conditions described in the formulation of the Propo-
sition. By a log-function, we will mean a function of the type L(x, c, s) = ln(ρ(x, c)) + s for some
tuple c and some real number s. Let us denote the class of all log-functions by L.

2◦. Let us prove that the class of all log-functions is closed under addition, i.e., that for every two
log-functions L(x, c; , s′) and L(x, c′′, s′′), their sum is also a log-function.

Indeed, by definition, L(x, c′, s′) = ln(ρ(x, c′)) + s′ and L(x, c′′, s′′) = ln(ρ(x, c′′)) + s′′. Since the
family F is closed under fusion, the result of fusing the corresponding pdfs is also a pdf from the
same family, i.e., C · ρ(x, c′) · ρ(x, c′′) = ρ(x, c) for some tuple c. By taking logarithms of both sides
of this equality, we conclude that

ln(C) + ln(ρ(x, c′)) + ln(ρ(x, c′′)) = ln(ρ(x, c)).

If we add s′ + s′′ − ln(C) to both sides of the resulting equality, we conclude that

(ln(ρ(x, c′)) + s′) + (ln(ρ(x, c′′)) + s′′) = ln(ρ(x, c)) + (s′ + s′′ − ln(C)),

i.e., that the sum of the two given log-functions is indeed a log-function:

L(x, c′, s′) + L(x, c′′, s′′) = L(x, c, s′ + s′′ − ln(C)).
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The statement is proven.

3◦. Let us now prove that for each log-function L(x, c, s) and for every integer M ≥ 2, the function
M−1 · L(x, c, s) is also a log-function.

By definition, L(x, c, s) = ln(ρ(x, c)) + s. Since for the family F , every piece of knowledge can
be obtained by fusing small pieces of information, we conclude that the pdf ρ(x, c) can be obtained
by fusing M instances of some other pdf ρ(x, c′), i.e., that ρ(x, c) = C · (ρ(x, c′))M . By taking
logarithms of both sides of this equality, we get ln(ρ(x, c)) = M · ln(ρ(x, c′)) + ln(C), thus

M−1 · ln(ρ(x, c)) = ln(ρ(x, c′)) +M−1 · ln(C).

By adding M−1 · s to both sides, we get

M−1 · (ln(ρ(x, c)) + s) = ln(ρ(x, c′)) +M−1 · (ln(C) + s).

The left-hand side of this formula is exactly M−1·L(x, c, s), and the right-hand side is a log-function.
So, the statement is proven.

4◦. Let us now consider the closure C of the set L of all log-functions – the closure in the usual
topological sense, i.e., the set of all limit functions with respect to some natural topology on the
class of all differentiable functions. Since the set L is closed under addition, its closure C is also
closed under addition.

Let us prove that this closure is closed under multiplication by positive numbers. In other words,
let us prove that for each function f(x) ∈ C and for every positive real number r > 0, the function
r · f(x) also belongs to C. Since C is the closure of the set of all log-functions, it is sufficient to
prove that for each log-function L(x, c, s) and for every positive real number r > 0, the function
r · L(x, c, s) is a limit of log-functions.

Indeed, for every possible accuracy ε > 0, we can approximate, with this accuracy, the real

number r by a rational number
N

M
. By Part 3 of this proof, the function M−1 · L(x, c, s) is also

a log-function. Now, by Part 2 of this proof, the function
N

M
· L(x, c, s) is also a log-function –

as the sum of N log-functions M−1 · L(x, c, s). When
N

M
tends to r, the corresponding function

N

M
·L(x, c, s) tends to r ·L(x, c, s). Thus, the function r ·L(x, c, s) is indeed a limit of log-functions.

The statement is proven.

5◦. By combining Parts 2 and 4, we conclude that for every finite set of functions C1(x), . . . , Ck(x)
from the set C, and for every tuple of positive numbers r1, . . . , rk, the linear combination

r1 · C1(x) + . . .+ rk · Ck(x)

also belongs to L.

6◦. Let us now prove that the set C cannot contain more than m+1 linearly independent functions.
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Indeed, if this was the case, and we would have more than m+ 1 linearly independent functions,
then we would have at least m+ 2 of them C1(x), . . . , Cm+2(x) in the class C. Then, due to Part 5
of this proof, the class C will contain a (m+ 2)-parametric family of functions

r1 · C1(x) + . . .+ rm+2 · Cm+2(x)

of different functions. However, the class C is the closure of the class L of functions of the type
ln(ρ(x, c)) + s that depend on m+ 1 parameters:

− we have m parameters c1, . . . , cm and

− we have an additional parameter s.

So, the closure of this set is also of dimension m + 1 (or less) – and thus, cannot contain more-
dimensional subfamilies. The statement is proven.

7◦. Let us denote by S the class of all linear combinations of functions from the class C. Clearly,
C ⊆ S, and, due to Part 6, the dimension d of the linear space S cannot exceed m+1. So, if we pick
any basis e1(x), . . . , ed(x) in this class, then each function f(x) from the class S can be represented
as a linear combination of functions from this basis: f(x) = C1 · e1(x) + . . . + Cd · ed(x), for some
values C1, . . . , Cd.

We can pick the basis from the set C. Moreover, since the closure does not change the dimension,
we can pick it from the original class L of log-functions. All the pdf functions from the family F
are, by definition of a family, differentiable. Thus, every log-function is also differentiable. Hence,
we can choose the basis of differentiable functions.

8◦. Let us prove that the class L is closed under arbitrary re-scalings, i.e., if a function f(x1, . . . , xn)
is in this class, then for each tuple a = (a1, . . . , an) of positive numbers and for each tuple b =
(b1, . . . , bn) of real numbers, the function f(a · x1 + b1, . . . , an · xn + bn) also belongs to the class L.

This follows from the requirement that the family F is scale- and shift-invariant, if we take
logarithms of both sides and add appropriate constants to both sides.

9◦. From Part 8, we can conclude that the closure class C is also invariant with respect to arbitrary
re-scalings. Thus, the class S of all linear combinations of functions from C is also thus invariant.

10◦. Let us first study the consequences of shift-invariance of the class S with respect to the first
variable. This shift-invariance implies, in particular, that for each basis function ei(x1, x2, . . . , xn),
the result of its shift ei(x1 + b1, x2, . . . , xn) is also a function from the class S, i.e., that

ei(x1 + b1, x2, . . . , xn) =

d∑
j=1

Cij(b1) · ej(x1, x2, . . . , xn),

for some coefficients Cij that, in general, depend on b1.
For a while, let us fix the values x2, . . . , xn and only consider the dependence on x1. In other

words, let us consider auxiliary functions Ei(x1)
def
= ei(x1, x2, . . . , xn). Foe these auxiliary functions,

the above formula takes the form

E1(x1 + b1) = C11(b1) · E1(x1) + . . .+ C1d(b1) · Ed(x1);
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. . .

Ed(x1 + b1) = Cd1(b1) · E1(x1) + . . .+ Cdd(b1) · Ed(x1);

Here, all the functions E1(x1) . . . , Ed(x1) are differentiable – since they come by fixing some values
from the basis functions ei(x1, . . . , xn), and the basis functions are differentiable.

Let us prove that the dependencies Cij(b1) are also differentiable. Indeed, for each i, let us pick
d different values x11, . . . , x1d of x1, then we get the following d linear equations for d unknowns
Ci1(b1), . . . , Cin(b1):

Ei(x11 + b1) = Ci1(b1) · E1(x11) + . . .+ Cid(b1) · Ed(x11);

. . .

Ei(x1d + b1) = Ci1(b1) · E1(x1d) + . . .+ Cid(b1) · Ed(x1d).

Each element Cij(b1) solution to a system of linear equations can be described, by using the Cramer
rule, as the ratio of two determinants, i.e., as a smooth function of all the coefficients. Since the
coefficients Ei(x1k + b1) smoothly depend on b1, we conclude that the solutions Cij(b1) are also
differentiable functions of b1.

Since all the functions Ei(x1) and Cij(b1) are differentiable, we can differentiate both sides of
all equalities describing Ei(x1 + b1) with respect to b1, and take b1 = 0. Then, we get the following
system of equations:

E′1(x1) = c11 · E1(x1) + . . .+ c1d · Ed(x1);

. . .

E′d(x1) = cd1 · E1(x1) + . . .+ cdd · Ed(x1),

where E′i(x1) denotes the derivative, and cij
def
= C ′ij(0).

In other words, for the functions E1(x), . . . , Ed(x), we get a system of linear differential equations
with constant coefficients. It is known that a general solution to such system of equations is a
linear combination of functions of the type xk1 · exp((p + i · q) · x1), i.e., functions of the type
xk1 · exp(p ·x1) · cos(q ·x1) and xk1 · exp(p ·x1) · sin(q ·x1), where p+ i · q are eigenvalues of the matrix
cij , and k is a non-negative integer corresponding to duplicate eigenvalues.

For a d× d matrix, the multiplicity of an eigenvalue cannot exceed d, so k ≤ d.

11◦. Let us now study the consequences of scale-invariance of the class S with respect to the first
variable. This scale-invariance implies, in particular, that for each basis function ei(x1, x2, . . . , xn),
the result of its re-scaling ei(a1 · x1, x2, . . . , xn) is also a function from the class S, i.e., that

ei(a1 · x1, x2, . . . , xn) =
d∑

j=1

Dij(a1) · ej(x1, x2, . . . , xn),

for some coefficients Dij that, in general, depend on a1. Thus,

E1(a1 · x1) = D11(a1) · E1(x1) + . . .+D1d(a1) · Ed(x1);
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. . .

Ed(a1 · x1) = Dd1(a1) · E1(x1) + . . .+Ddd(a1) · Ed(x1);

Similarly to Part 10 of this proof, we can prove that the dependencies Dij(a1) are also differentiable.
By differentiating both sides of the above equations with respect to a1 and taking a1 = 1, we
conclude that

x1 · E′1(x1) = d11 · E1(x1) + . . .+ d1d · Ed(x1);

. . .

x1 · E′d(x1) = dd1 · E1(x1) + . . .+ ddd · Ed(x1),

where dij
def
= D′ij(1).

In each equation, the left-hand side x1 ·
dEi

dx1
can be reformulated as

dEi

dx1/x1
=

dEi

d(ln(x1))
. Thus,

for the new variable X1
def
= ln(x1), we get the system of linear differential equations with constant

coefficients:
dE1

dX1
= d11 · E1(X1) + . . .+ d1d · Ed(X1);

. . .

dEd

dX1
= dd1 · E1(X1) + . . .+ ddd · Ed(X1).

We already know that a general solution to this equation is a linear combination of functions
Xk

1 · exp(p ·X1) · cos(q ·X1) and xk1 · exp(p ·X1) · sin(q ·X1). Substituting X1 = ln(x1) into these
formulas and taking into account that exp(p · ln(x1)) = (exp(ln(x1))

p = xp1, we conclude that a
general solution is a linear combination of functions of the type (ln(x1))

k · xp1 · cos(q · ln(x1)) and
(ln(x1))

k · xp1 · sin(q · ln(x1)).

12◦. From Parts 10 and 11 of this proof, we get two different expressions for the functions Ei(x1).
By comparing these expressions, one can easily see that the only functions that can be described
in both forms are functions of the form xk for some non-negative integer k ≤ d – or their linear
combinations. So, each function Ei(x1) is a linear combination of such functions – i.e., a polynomial.

13◦. We have shown that for each combination of values of x2, . . . , xn, the dependence of each
function ei(x1, x2, . . . , xn) on x1 can be described by a polynomial of degree ≤ d. Similarly, we can
prove that for each combination of values x1, x3, . . . , xn), the dependence on x2 is also described
by a polynomial. Let us combine these two conclusions and prove that each i, and for all possible
values of x3, . . . , xn, the dependence of ei(x1, x2, x2, . . . , xn) on x1 and on x2 can be described by a
polynomial of two variables.

Indeed, let us denote T (x1, x2)
def
= ei(x1, x2, x3, . . . , xn). We know that:

− for each x2, this expression is a polynomial is x1, and

− for each x1, this expression is a polynomial is x2.
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Let us prove that T (x1, x2) is a polynomial of two variables.
Indeed, the fact that the dependence of ei on x1 can be described by a polynomial of order ≤ d

can be rewritten, in terms of the function T (x1, x2), as

T (x1, x2) = a0(x2) + a1(x2) · x1 + . . .+ ad(x2) · xd1.

In writing this expression, we took into account that, in general, for different values of x2, the
coefficients a0, . . . , ad of this polynomial may be different.

Let us substitute d1 different values x10, . . . , x1d of x1 into this formula. As a result, we have
d+ 1 linear equations for d+ 1 unknowns a0(x2), . . . , ad(x1), with constant coefficients:

T (x10, x2) = a0(x2) + a1(x2) · x10 + . . .+ ad(x2) · xd10;

. . .

T (x1d, x2) = a0(x2) + a1(x2) · x1d + . . .+ ad(x2) · xd1d.

In general, each component in a solution to a system of linear equations is a linear combination of
the right-hand sides. The right-hand sides T (x1i, x2) are polynomials of x2. Thus, each coefficient
ai(x2) is a linear combination of polynomials – thus, a polynomial itself. Since all the expressions
ai(x2) are polynomials, the whole above expression for T (x1, x2) becomes a polynomial in two
variables x1 and x2.

By adding variables one by one, we can prove that the dependence on x1, x2, and x3 is a polyno-
mial, etc. – all the way to proving that the dependence of each of the basis function ei(x1, . . . , xn)
on all n variables x1, . . . , xn is a polynomial. Thus, each element of the class S – which is a linear
combination of the basis functions – is also a polynomial.

For each tuple of parameters c, the function ln(ρ(x, c)) belongs to the class L ⊆ S and is, thus,
also a polynomial. So, indeed, each pdf ρ(x, c) from the family F has the form exp(P (x1, . . . , xn))
for some polynomial P (x1, . . . , xn). The proposition is proven.
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