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Why Ellipsoids in Mechanical Analysis of Wood Structures

F. Niklas Schietzold1, Julio Urenda2,3, Vladik Kreinovich3, Wolfgang Graf1, and
Michael Kaliske1

1Institute for Structural Analysis, Technische Universität Dresden
01062 Dresden, Germany, {niklas.schietzold, wolfgang.graf, michael.kaliske}@tu-dresden.de

2,3Departments of 2Mathematical Sciences and 3Computer Science
University of Texas at El Paso, El Paso, TX 79968, USA, {jcurenda, vladik}@utep.edu

Abstract. Wood is a very mechanically anisotropic material. At each point on the wooden beam,
both average values and fluctuations of the local mechanical properties corresponding to a certain
direction depend, e.g., on whether this direction is longitudinal, radial or tangential with respect
to the grain orientation of the original tree. This anisotropy can be described in geometric terms,
if we select a point x and form iso-correlation surfaces – i.e., surfaces formed by points y with
the same level of correlation ρ(x, y) between local changes in the vicinities of the points x and y.
Empirical analysis shows that for each point x, the corresponding surfaces are well approximated
by concentric homothetic ellipsoids. In this paper, we provide a theoretical explanation for this
empirical fact.

Keywords: wood mechanical properties, ellipsoids, anisotropy

1. Formulation of the Problem:
Need for a Theoretical Explanation of an Empirical Fact

Wood is a very mechanically anisotropic material. At each point on the wooden beam, both average
values and fluctuations of the local mechanical properties corresponding to a certain direction
depend, e.g., on whether this direction is longitudinal, radial or tangential with respect to the grain
orientation of the original tree. This anisotropy can be described in geometric terms, if we select a
point x and form iso-correlation surfaces – i.e., surfaces formed by points y with the same level of
correlation ρ(x, y) between local changes in the vicinities of the points x and y.

Empirical analysis shows that for each point x, the corresponding surfaces are well approxi-
mated by concentric homothetic ellipsoids; see, e.g., (Schietzold, 2019). How can we explain this
empirical fact?

2. Our Explanation: Main Idea

In this paper, we provide a theoretical explanation for this empirical fact. The main ideas behind
our explanation are similar to the ideas used in (Finkelstein, Kosheleva, and Kreinovich, 1996; Li,
Ogura, and Kreinovich, 2002) to explain efficiency of ellipsoid approximation in numerical analysis
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(see, e.g., (Schweppe, 1968; Schweppe, 1973; ?; Belforte and Bona, 1985; Norton, 1985; Chernousko,
1988; Soltanov, 1990; Utyubaev, 1990; Filippov, 1992; Chernousko, 1994)); the main difference is
that now we consider:

− not classes of sets (such as the class of all ellipsoids), but

− classes of families of sets (e.g., the class of all families of concentric homothetic ellipsoids).

Specifically, we show that for the smallest dimension d for which it is possible to have an affine-
invariant optimality criterion on the space of all such d-dimensional classes, for any such criterion,
the optimal family consists of concentric homothetic ellipsoids. Thus, such families of ellipsoids
provide the optimal approximation to the actual surfaces – at least in the first approximation, i.e.,
approximation corresponding to the smallest possible number of parameters.

3. Our Explanation: Details

Family of sets: towards a precise definition. For each spatial point x, we would like to describe,
for each possible value ρ0 of the correlation ρ(x, y), the set Sρ0(x) of all the points y for which the
correlation ρ(x, y) between the values at x and y is greater than or equal to ρ0.

What are the natural properties of these families of sets?

First property: coverage. For each y, there is some value of ρ(x, y), so for this x, the union of
all these sets Sρ0(x) coincides with the whole space.

Second property: monotonicity. Of course, if ρ(x, y) ≥ ρ0 and ρ0 ≥ ρ′0, then ρ(x, y) ≥ ρ′0. So,
the sets Sρ0(x) should be inclusion-monotonic: if ρ0 ≤ ρ′0, then Sρ′0(x) ⊆ Sρ0(x).

Third property: boundedness. From the physical viewpoint, the further away is the point y
from the point x, the less the physical quantities corresponding to these points are correlated. As
the distance increases, this correlation should tend to 0. Thus, each set Sρ0(x) is bounded.

Fourth property: continuity. In physics, most processes are continuous – with the exception
of processes like fracturing, which we do not consider here. We can therefore conclude that the
correlation ρ(x, y) continuously depends on y. So, if we have ρ(x, yn) ≥ ρ0 for some sequence of
points yn that converges to a point y (yn → y), then we should have ρ(x, y) = lim

n→∞
ρ(x, yn) ≥ ρ0.

In other words, if yn ∈ Sρ0(x) and yn → y, then y ∈ Sρ0(x), i.e., each set Sρ0(x) is closed.
Similarly, it is reasonable to conclude that the set Sρ0(x) should continually depend on ρ0, i.e.,

that of the two values ρ0 and ρ0 are close, then the corresponding sets Sρ0(x) and Sρ′0(x) should also

be close. A natural way to describe closeness between (bounded closed) sets is to use the so-called
Hausdorff distance. In precise terms, for any ε > 0, we say that the sets A and B are ε-close if:

− every point a ∈ A is ε-close to some point b ∈ B (in the sense that the distance d(a, b) does
not exceed ε: d(a, b) ≤ ε), and

− every point b ∈ B is ε-close to some point a ∈ A.
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The Hausdorff distance dH(A,B) between the sets A and B is then defined as the smallest ε for
which the sets A and B are ε-closed. It can be shown that this distance can be equivalently defined
as follows:

dH(A,B) = max

(
sup
a∈A

d(a,B), sup
b∈B

d(b, A)

)
,

where d(a,B)
def
= inf

b∈B
d(a, b).

Fifth property: what is the set of possible values of the parameter? In this family of sets,
correlation value is a parameter. What are the possible values of correlation? In general, correlations
can take any value from −1 to 1. When y = x, the correlation is clearly equal to 1. When y →∞,
we get values close to 0. Since the function ρ(x, y) is continuous, this function takes all intermediate
values. So, the possible values of the correlation form some interval. In some cases, we may have
all possible negative values, in other cases, only some negative values, in yet other cases, we only
have non-negative values. So, in general, we will consider all possible intervals of possible value of
ρ0. This interval may be closed – if there are points with - correlation, or is can be open.

Resulting definition. So, we arrive at the following definition.

Definition 1. Let N ≥ 2 be an integer. By a family of sets, we mean a set {Sc : c ∈ I} of bounded
closed sets Sc ⊆ IRN obtained by applying, to each real number c from a non-degenerate interval I
(open or closed, finite or infinite), a mapping c→ Sc that has the following properties:

− the dependence of Sc on c is continuous: if cn → c, then dH(Scn , Sc)→ 0,

− the family Sc is monotonic: if c < c′, then Sc′ ⊆ Sc, and

− the union of all the sets Sc coincides with the whole space.

Comments.

− According to this definition, the family remains the same if we simply re-parameterize the
family: e.g., if instead of the original parameter c, we use a new parameter c′ = c + c0 or
c′ = λ · c for some constants c0 and λ.

− In our specific problem, we are interested in the 3-D case N = 3. However, since we can
envision similar problem in the plane N = 2 or in higher-dimensional spaces – and since the
proof of our main result does not depend on any specific value N – in this paper, we consider
the general case N ≥ 2.

− We are specifically interested in concentric homothetic families of ellipsoids, i.e., in families of
the type Sc = c · E + a, where a is a given vector, and E is an ellipsoid with a center at 0.

Class of families of sets. For different situation, in general, we get different correlations and
thus, different families of sets. We would like to find general class of such families that would,
ideally, cover all such situations. We can use different parameters to differentiate different families
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from this class. In other words, a class can be described as a method for assigning, to each possible
combination of values of these parameters, some family. As before, it makes sense to require that
the resulting mapping is continuous.

Definition 2. Let N ≥ 2 and r > 0 be integers. By a r-parametric class of families of sets, we mean
a mapping that assigns, to each element p = (p1, . . . , pr) from an open r-dimensional set D ⊆ IRr,
a family {Sc(p)} so that the dependence of Sc(p) on c and p is continuous.

Optimality criteria: general idea. Out of all possible classes, we want to select a class which is,
in some reasonable sense, optimal. For this, we need to be able to describe when some classes are
better than others. In other words, we need to have an order on the set of all the classes. It would
be nice to have a total (linear) order, in the sense that for every two classes, we should be able to
tell which one ois better, but it may be sufficient to have a partial order – as long as this order
enables us to select the best class, it is OK if some not-best classes, we do not have an opinion of
which of them is better.

In practice, usually, optimality criteria are described in numerical form: we have an objective
function f(a) that assigns a numerical value to each possible alternative a, and we want to select an
alternative for which this value is the largest possible (or, depending on the context, the smallest
possible). For example, a company want to maximize its profit, a city wants to upgrade its road
system so as to minimize the average travel time, etc.

However, often, we need to go somewhat beyond this approach. Indeed, for example, a company
may have two (or more) different projects that lead to the same expected profit. In this case, we
can use this non-uniqueness to optimize something else – e.g., out of all most-profitable projects,
select the one that leads to the smallest possible long-term environmental impact. In this case, we
have a more complex criterion for comparing alternatives: instead of saying that an alternative a
is better than the alternative a′ if f(a) > f(a′), we say that a is better if either f(a) > f(a′) or
f(a) = f(a′), and g(a) > g(a′) for some other numerical criterion g(a). If this still does not select
us a unique alternative, we can optimize yet something else, etc. In view of this possibility, in this
paper, we do not restrict ourselves to numerical optimization criteria and use the most general
definition of the optimality criterion, when:

− for some pairs of alternatives a and a′, we know that a is better (we will denote it by a′ < a),

− for some pairs of alternatives a and a′, we know that a′ is better (a < a′), and

− for some pairs of alternatives a and a′, a and a′ are of the same value (we will denote it
by a ∼ a′).

Clearly, if a′ is better than a and a′′ is better than a′, then a′′ should be better than a, etc. Thus,
we arrive at the following definition:

Definition 3. Let A be a set; elements of this set will be called alternatives. By an optimality
criterion, we mean a pair of binary relations (<,∼) on the set A for which the following properties
hold:

− if a < a′ and a′ < a′′, then a < a′′;
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− if a < a′ and a′ ∼ a′′, then a < a′′;

− if a ∼ a′ and a′ < a′′, then a < a′′;

− if a ∼ a′ and a′ ∼ a′′, then a ∼ a′′;

− if a ∼ a′, then a′ ∼ a;

− if a < a′, then we cannot have a′ < a or a ∼ a′.

Comment. Such a pair of relations is sometimes called a partial pre-order.

Definition 4. Let (<,∼) be an optimality criterion on a set A. An alternative aopt is called optimal
with repect to this criterion if for every alternative a ∈ A, we have a < aopt or a ∼ aopt.
We need a final optimality criterion. If an optimality criterion does not select any alternative
as optimal, this means that this criterion still needs work – this may happen if for most pairs
of alternatives, this criterion does not tell us which alternative is better. So, for the optimality
criterion to be useful, it must select at least one optimal alternative.

If the criterion selects several alternatives as optimal, this means – as we have mentioned earlier
– that this criterion is not final: we can use the resulting non-uniqueness to optimize something
else, i.e., in effect, to come up with a better optimality criterion. If for this better criterion, we still
have several optimal alternatives, we can (and should) modify this criterion even further, etc., until
we finally get a criterion for which there is exactly one optimal alternative. Thus, we arrive at the
following natural definition.

Definition 5. We say that an optimality criterion is final if there exists exactly one alternative
which is optimal with respect to this criterion.

For our problem, an optimality criterion must be affine-invariant. In our case, we want to
compare different classes (of families of sets). In selecting optimality criteria, it is reasonable to take
into account that while we want to deal with sets of points in physical space, from the mathematical
viewpoint, we deal with sets of tuples of real numbers. Real numbers (coordinates) describing each
point depend on what coordinate system we use: if we select a different starting point, then all the
coordinates are shifted xi → xi+ai; if we select different axes for the coordinates, we get a rotation

xi →
N∑
j=1

rij · xj for an appropriate matrix rij , etc.

These transformations make sense for the isotropic case, when all the properties of a material
are the same in all directions. Wood is an example of an anisotropic material: e.g., it is easier to
cut it along the orientation of the original tree than across that orientation. It is known that in
many cases, the description of an anisotropic material can be reduced to the isotropic case if we
apply an appropriate affine transformation. This usually comes from the fact that, e.g., mechanical
properties of a body can be described by a symmetric matrix, and each symmetric matrix can
become a unit matrix if we use its eigenvectors as the base for the new coordinate system.

In view of this, it is reasonable to require that our optimality criterion is invariant not only with
respect to shifts and rotations, but also with respect to all possible affine (linear) transformations.
Thus, we arrive at the following definitions.
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Definition 6. Let N > 2 be an integer. By an affine transformation, we mean a transformation

T : IRN → IRN of the type (Tx)i = ai +
N∑
j=1

bij ·xj for some reversible matrix bij. Let T be an affine

transformation.

− Let S ⊆ IRN be a set. By the result T (S) of applying T to S, we mean the set {T (s) : s ∈ S}.

− Let F = {Sc : c ∈ I} be a family of sets. By the result T (F ) of applying T to F , we mean the
family {T (Sc) : c ∈ I}.

− Let C = {Sc(p)} be class of families. By the result T (C) of applying T to C, we mean the
class {T (Sc(p))}.

Definition 7. Let A be a set of alternatives, let (<,∼) be an optimality criterion of the set A,
and let T be a class of transformations A → A. We say that the optimality criterion (<,∼) is
T -invariant if for every T ∈ T and for all a, a′ ∈ A, the following two properties hold:

− if a < a′ then T (a) < T (a′), and

− If a ∼ a′, then T (a) ∼ T (a).

Proposition 1. Let N > 0 and r > 0 an integers, and let (<,∼) be a final affine-invariant
optimality criterion on the set of all r-parametric classes of families of sets in IRN . Then:

− r ≥ N · (N + 3)

2
− 1; and

− for r =
N · (N + 3)

2
− 1, the optimal class consists of concentric homothetic families of

ellipsoids.

Comment. This result indeed shows that the class of concentric homothetic families of ellipsoids
is the simplest of all possible optimal classes – simplest in the sense that it requires the smallest
number of parameters to describe.

4. Proof

1◦. Since the optimality criterion is final, there exists exactly one class Copt which is optimal with
respect to this criterion, i.e., for which C < Copt or C ∼ Copt for all other classes C. Let us first
prove that the optimal class Copt is itself affine-invariant, i.e., that T (Copt) = Copt for each affine
transformation T .

Indeed, due to optimality, for each class C and for each affine transformation class T , for the
class T−1(C), i.e., we have either T−1(C) < Copt or T−1(C) ∼ Copt.

Since the criterion is affine-invariant, we have either T (T−1(C)) < T (Copt) or T (T−1(C)) ∼
T (Copt). Here, by the definition of the inverse transformation, T (T−1(C)) = C, so we conclude
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that for every class C, we have either C < T (Copt) or C ∼ T (Copt). By definition of optimality, this
means that the class T (Copt) is optimal. However, our optimality criterion is final, which means
that there is only one optimal class. Thus, indeed, T (Copt) = Copt.

Since the optimal class is affine-invariant, with each family F this class also contains the family
T (F ). This means, in its turn, that for each set Sc from each family, some family from the optimal
class also contains the set T (Sc).

2◦. Let us show that r ≥ N · (N + 3)

2
− 1. Indeed, it is known (see, e.g., (Busemann, 1955)) that

for every non-degenerate bounded set S (i.e., for every bounded set which is not contained in a
proper subspace), among all ellipsoids that contain S, there exists a unique ellipsoid of the smallest
volume. It is also known that this correspondence between a set and the corresponding ellipsoid is
affine-invariant: if an ellipsoid E corresponds to the set Sc, then, for each affine transformation T ,
to the set T (Sc) there corresponds the ellipsoid T (E).

It is known that every two ellipsoids can be obtained from each other by an appropriate affine
transformation. Thus, the family of all ellipsoids corresponding to all the sets from all the families
consists of all the ellipsoids. How many ellipsoids are there? A general ellipsoid can be determine

by a quadratic formula
∑
ij
aij · xi · xj +

N∑
i=1

ai · xi ≤ 1 for some symmetric matrix aij and a vector

ai – and it is easy to see that different combinations of the matrix and the vector lead to different
ellipsoids. We need N values a1, . . . , aN to describe a vector. Out of N2 elements of the matrix, we

need N values to describe its diagonal values aii and we need
N2 −N

2
to describe non-diagonal

elements: we divide by two since the matrix is symmetric aij = aji. Thus, overall, we need

N +N +
N2 −N

2
=
N · (N + 3)

2

values.

Thus, the set of all ellipsoids is
N · (N + 3)

2
-dimensional. Since to each set Sc from families from

the optimal class, we assign an ellipsoid, the dimension of the set of such sets should also be at

least
N · (N + 3)

2
-dimensional. These sets are divided into 1-parametric families, so the dimension

r of the class of such families cannot be smaller than the above dimension minus 1. Thus, indeed,

r ≥ N · (N + 3)

2
− 1.

3◦. Let us now prove that for the smallest possible dimension r = rmin
def
=

N · (N + 3)

2
− 1, all the

sets Sc from the each family of the optimal class are ellipsoids.
In Part 2 of this proof, we showed that each ellipsoid is associated with some set Sc from one

of these families. The unit ball with a center at 0 is clearly an ellipsoid. Let us consider the set
Sc which is associated with this unit ball. A unit ball is invariant with respect to all the rotations
around its center. If the associated set Sc is not equal to the unit ball, this means that this set
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is not invariant with respect to at least some rotations. In other words, the group of all rotations
that leave this set invariant is a proper subgroup of the group of all rotations. This implies that
the dimension of this group is smaller than the dimension of the group of all rotations – and thus,
that there exists at least 1-parametric family R of rotations R with respect to which the set Sc is
not invariant.

Since the optimal class is affine-invariant, all the sets R(Sc) are also sets from some family
from the optimal class – and for all of them, the same unit ball is the smallest-volume ellipsoid.
Thus, for this particular ellipsoid – the unit ball, we have at least a 1-dimensional family of sets
Sc associated with this same ellipsoid. By applying a generic affine transformation, we can find a
similar at-least-1-dimensional family of sets corresponding to each ellipsoid. Thus, the dimension
of the set of all sets Sc is at least one larger than the dimension of the family of all ellipsoids, i.e.

at least
N · (N + 3)

2
+ 1 = rmin + 2. However, we have a rmin-dimensional class of 1-dimensional

families of sets, so the overall dimension of the set of all the sets Sc cannot be larger than rmin + 1.
This contradiction shows that the set Sc cannot be different from the enclosing minimal-volume
ellipsoid. Thus, indeed, each set from each family from the optimal class is an ellipsoid.

4◦. To complete the proof, we need to prove that ellipsoids in each family are concentric and
homothetic.

We have proven that each ellipsoid appears as an appropriate smallest-volume set. Now that we
know that each set Sc coincides with its smallest-volume enclosure, we can thus conclude that each
ellipsoid appears as one of the sets Sc from one of the families from the optimal class. Similarly
to Part 3 of this proof, let us consider the unit ball centered at 0. If the 1-dimensional family F0

containing this ball is not invariant with respect to all possible rotations around the ball’s center,
then we have at least a 1-dimensional group of different families containing the same ellipsoid – the
unit ball. However, the only way for an rmin-dimensional class of 1-dimensional families to cover the
whole (rmax + 1)-dimensional family of ellipsoids is when all elements of all families are different.
So we cannot have several families containing the same ellipsoid.

This argument shows that the family F0 containing the unit ball should be rotation-invariant.
Since all the sets from this family are included in each other and thus, cannot be transformed
into each other by rotations – this means that each ellipsoid from this family F0 must be rotation-
invariant. This means that each ellipsoid from this family must be a ball concentric with our selected
unit ball – and thus, homothetic to this ball.

For any other family F , by selecting any ellipsoid E from this family and applying the affine
transformation that transforms the above unit ball into E, we get a new family T (F0) of concentric
homothetic ellipsoids. Since an ellipsoid can only belong to one family, we thus conclude that the
family F also consists of concentric homothetic ellipsoids.

The proposition is proven.
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