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Can We Preserve Physically Meaningful “Macro”

Analyticity without Requiring Physically

Meaningless “Micro” Analyticity?

Olga Kosheleva and Vladik Kreinovich
University of Texas at El Paso

500 W. University, El Paso, Texas 79968, USA
olgak@utep.edu, vladik@utep.edu

Abstract

Physicists working on quantum field theory actively used “macro” an-
alyticity – e.g., that an integral of an analytical function over a large
closed loop is 0 – but they agree that “micro” analyticity – the possibility
to expand into Taylor series – is not physically meaningful on the micro
level. Many physicists prefer physical theories with physically meaning-
ful mathematical foundations. So, a natural question is: can we preserve
physically meaningful “macro” analyticity without requiring physically
meaningless “micro” analyticity? In the 1970s, an attempt to do it was
made by using constructive mathematics, in which only objects generated
by algorithms are allowed. This did not work out, but, as we show in this
paper, the desired separation between “macro” and “micro” analyticity
can be achieved if we limit ourselves to feasible algorithms.

1 “Macro” vs. “Micro” Analyticity: Formula-
tion of the Problem

Smoothness in physics. On macro-level, we observe many non-smooth and
even discontinuous phenomena:

• earthquakes,

• phase transitions, etc.

However, on the micro-level, all equations and all phenomena are smooth – and
even analytical; see, e.g., [4, 10]. Some of these phenomena are very fast – so
we perceive them as discontinuous.

Analyticity. For complex numbers, smoothness implies analyticity.
Analyticity has been successfully used in quantum field theory. For example,

to compute the values of some integral expressions, it is convenient to use the
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fact that for an analytical function, a contour integral over a closed loop is 0:∫
γ

f(z) dz = 0,

or it is equal to an explicit expression in terms of the poles.

How this “macro” analyticity can help physics. By using a loop [−N,N ]∪
γ′, we can replace a difficult-to-compute integral over real numbers

∫ N
−N f(x) dx

with an often-easier-to-compute integral over the complex values
∫
γ′ f(z) dz.

This idea – mostly pioneered by Nikolai Bogolyubov (see, e.g., [3] – led to many
successful applications.

This “macro” analyticity has been confirmed by many experiments and
makes perfect physical sense.

But what about “micro” analyticity? The problem is that in traditional
mathematics, such “macro” analyticity is equivalent to “micro” one, that the
corresponding dependencies can be expanded in Taylor series:

f(z) = a0 + a1 · (z − z0) + a2 · (z − z0)2 + . . .+ an · (z − z0)n + . . .

In the opinion of physicists, however, this “micro” analyticity does not make
direct physical sense, since on the micro level, quantum uncertainty makes exact
measurements impossible.

Can we preserve physically meaningful “macro” analyticity without requiring
physically meaningless “micro” analyticity?

2 Khalfin’s Idea: First Attempt

Maybe constructive mathematics can help? The equivalence between
“macro” and “micro” analyticity holds in traditional mathematics, where, crudely
speaking, we only care about the existence of different objects – but not about
algorithms for computing these objects.

The algorithmic problems are important. So,to deal with these problems,
researchers have come up with the idea of constructive mathematics, where we
say that an object exists only if we have an algorithm for constructing this
object; see, e.g., [1, 2, 11].

In constructive mathematics, some equivalence results of traditional mathe-
matics hold – in the sense that equivalence is algorithmic – while other equiv-
alence results do not hold. So, in early 1970s, Leonid Khalfin, a specialist in
mathematical physics from St. Petersburg, Russia, suggested that maybe the use
of constructive mathematics can help us preserve physically meaningful “macro”
analyticity without requiring physically meaningless “micro” analyticity?

This did not help. By the early 1970s, specialist in constructive mathematics
have thoroughly studied complex analysis; see, e.g., [1, 6, 8]. Actually, the 1972
talk of Vladimir Overkov (one of the constructive mathematics pioneers), the
talk whose results later appeared in [8] – this talk inspired Khalfin’s suggestion.
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Unfortunately, these constructive mathematics results showed that in con-
structive mathematics, “macro” analyticity still implies the “micro” one; this
was pointed out almost right away by Vladimir Lifschitz – another pioneer of
constructive complex analysis, the authors of a paper [6]. He pointed out that
each coefficient an of the Taylor series can be determined by the following for-
mula:

an =
1

2π · i
·
∫
γ

f(z)

(z − z0)n+1
dz, (1)

and in constructive mathematics, an integral of a computably continuous func-
tion is computable [1, 2, 11].

3 Problem Revisited

Main idea. The above derivation of “micro” analyticity from the “macro” one
is based on the usual constructive mathematics. In this approach, existence of
an object means, in effect, the existence of an algorithm producing more and
more accurate approximations to this object – irrespective to how long this
algorithm may take.

A more realistic idea is to only allow feasible (= polynomial-time) algo-
rithms; see, e.g., [5, 9]. It turns out that in this case, Khalfin’s dream can be
materialized. Namely:

• wile there exists an algorithm computing, for each computable macro an-
alytical function, all the terms in its Taylor series expansion,

• it turns out that the computation time of this algorithm seems to grow
exponentially with the number n of the term – so such computations are
probably not feasible.

Let us provide arguments in favor of this conclusion.

Explanation. We have a computable function f(z). This means that we can,
given z, compute f(z).

For simplicity, we can also assume that we know the upper bound D on
|f ′(z)|: |f ′(z)| ≤ D.

Computation of the n-th Taylor coefficient an is based on the formula (1).
Here, the simplest possible loop γ around the point z0 is a circle of some small
radius r < 1. For this loop, |z − z0| = r.

We want to compute an with a given accuracy ε > 0. This means that we
need to compute the corresponding integral with accuracy ε′ = 2π · ε.

By definition, an integral is a limit of integral sums. So, in general, a natural
way to compute an integral

∫
g(z) dz is to consider the corresponding integral

sum ∑
g(zi) ·∆z, with |zi+1 − zi| = h for some small h.

In this approximation, we approximate g(z) with g(zi) on each arc of length h
for which |z − zi| ≤ h/2.
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The inaccuracy of this approximation is

|g(z)− g(zi)| ≤
(

max
z
|g′(z)| · |z − zi|

)
≤ max

z
|g′(z)| · (h/2).

Here, g(z) =
f(z)

(z − z0)n+1
≈ f(z)

rn+1
. Thus, max

z
|g′(z)| ≤ max |f ′(z)|

rn+1
=

D

rn+1
.

So, the approximation accuracy is
D

rn+1
· (h/2). To get accuracy ε′, we need

to take h for which

D

rn+1
· (h/2) = ε′, i.e., h = 2

ε′

D
· rn+1.

The whole loop γ of length 2π · r should be covered by intervals of length h.
These intervals correspond to values zi at which we compute f(z). Thus, we

need to compute f(z) for N =
2π · r
h

points.

Substituting the above expression for h, we conclude that we need to com-
pute f(z) at

N =
2π · r ·D
2ε′ · rn+1

∼ r−n points.

Since r < 1, this number indeed grows exponentially with n. This is exactly
what we wanted to show.

4 Possible Applications

This result will probably be of interest to theoreticians (like Khalfin) – who are
interested in providing physical theories with physically meaningful mathemat-
ical foundations.

This result may also have practical applications if we take into account that
many times when we encountered a physical process whose properties are diffi-
cult to compute, it became possible to use this process to speed up computations.
Successes of quantum computing are the latest example of this phenomenon; see,
e.g., [7].

From this viewpoint, maybe measurement of the corresponding Taylor coef-
ficients can lead to yet another efficient quantum computing scheme?
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