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Need for Simplicity and Everything Is a Matter
of Degree: How Zadeh’s Philosophy is Related to
Kolmogorov Complexity, Quantum Physics, and
Deep Learning

Vladik Kreinovich, Olga Kosheleva, and Andres Ortiz-Muñoz

Abstract Many people remember Lofti Zadeh’s mantra – that everything is a matter
of degree. This was one of the main principles behind fuzzy logic. What is somewhat
less remembered is that Zadeh also used another important principle – that there is
a need for simplicity. In this paper, we show that together, these two principles can
generate the main ideas behind such various subjects as Kolmogorov complexity,
quantum physics, and deep learning. We also show that these principles can help
provide a better understanding of an important notion of space-time causality.

1 Need for Simplicity and Everything Is a Matter of Degree: Two
Main Principles of Zadeh’s Philosophy

Two main ideas of Zadeh’s philosophy: in brief. In a nutshell, the main princi-
ple behind Lotfi Zadeh’s research is a phrase that he himself repeated many times:
Everything is a matter of degree. However, it is easy to forget – especially for math-
ematicians by training (like us) – that he also actively pursued another principle: the
idea that there is a need for simplicity.

These two principles underlie his ideas of fuzzy logic: yes, the first principle is
that everything is a matter of degree, so instead of 0 (false) and 1 (true) we have all
possible numbers from the interval [0,1]. However, to flesh out this argument, Zadeh
used simplicity as a guiding principle – thus, he selected the simplest “and”- and
“or”-operations (i.e., t-norms and t-conorms), he selected the simplest membership
functions, etc.; see, e.g., [13].
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Many of us remember that every time we came to him with some complex de-
velopments, his first reaction always was: can we make it simpler?

What we do in this paper. At first glance, it may seem that these two principles –
the need for simplicity and everything is a matter of degree – are specific for fuzzy
logic and related areas. However, what we show in this paper is that these principles
are valid way beyond fuzzy logic – i.e., beyond the description of imprecise natural
language statements.

We show how these principles can be naturally applied:

• first, to the principles themselves,
• then to the description of the physical world, and
• finally, to the way we gain knowledge about the world.

As a result, we naturally arrive at the main ideas behind, correspondingly, Kol-
mogorov complexity, quantum physics, and deep learning.

This shows that there probably is a lot of remaining potential in these principles
– which will enable us to solve many useful problems in the future as well.

2 Simplicity and Everything-Is-a-Matter-of-Degree Principles
Naturally Lead to Kolmogorov Complexity

Let us apply the principles to themselves. What are the possible applications of
the above two principle? The first natural idea is to apply these principles to the prin-
ciples themselves: namely, to the description of what is simple and what is complex.

Need for degree of complexity. In accordance with the everything-is-a-matter-of-
degree principle:

• we should not naively divide the constructions into simple and complex;
• instead, we should assign, to each construction, a degree of complexity.

What is the simplest degree of complexity? The complexity of an object is natu-
rally described by how complex it is to design it. In particular, for objects generated
by a computer, a natural measure of complexity is the complexity of a program that
generated this object.

What is the simplest possible measure of complexity? The simplest possible idea
is just to count the number of symbols in a program: if the program if short, it
is probably rather simple, and, vice versa, if the program is long, it is probably
complicated. So, a natural measure of a program complexity is its length.

For an object, the natural measure of its complexity is thus the length of the
program that generates this object. Of course, we can have different programs for
generating the same object:

• we can have reasonably short programs that compute this object directly, and
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• we can have over-complicated programs that beginning students often write.

In the US, such over-complicated constructions are known as Rube Goldberg ma-
chines – after a cartoonist who excelled in describing unnecessarily complex ways
of performing simple tasks.

From this viewpoint, to gauge the complexity of an object, we should take not
just any program that generates this object, but the simplest such program – and
we decided to measure the program’s complexity by its length, the shortest such
program. Thus, we arrive at the following definition.

We naturally arrive at Kolmogorov complexity. As we mentioned, the complexity
of an object x can be measured by the length of the shortest program that generates
this object. This definition is known as Kolmorogov complexity (see, e.g., [5]) and
is usually denoted by K(x).

Comments. Simultaneously with Kolmogorov, similar ideas were proposed by R.
Solomonoff and G. Chaitin [5].

The length of a program depends on the programming language. However, as
Kolmogorov has shown, the definitions K1(x) and K2(x) of Kolmogorov complexity
based on two different languages differ by a constant:

|K1(x)−K2(x)| ≤C12

for all x. Thus, in effect, different programming languages lead to a similar notion
of Kolmogorov complexity.

Why was Kolmogorov complexity invented – and how is it useful? While we
showed that Kolmogorov complexity naturally follows from the two main principles
of Zadeh’s philosophy, this is not how this notion was originally invented. This
notion was invented by Andrei Kolmogorov, a 20 century Russian mathematician
who was one of the pioneers of modern (mathematically precise) probability theory.
In addition to doing pure mathematics, Kolmogorov spent a lot of time and effort
on applications. Because of this, he noticed a discrepancy between the traditional
mathematical description of randomness and the physicists; and engineers’ intuitive
ideas of randomness.

Indeed, from the purely mathematical viewpoint, when you flip a fair coin n
times, all resulting binary sequences – describing the n results – have the exact
same probability 2−n and are, in this sense, completely equal. However, from the
practitioner’s viewpoint:

• some of these sequences are random – in the sense that one can expect to get
them when flipping an actual coin, and

• some sequences like 000...0 or 010101...01 are not random and thus, not ex-
pected.

From the purely mathematical viewpoint, if the same person wins the main multi-
million prize of a super-lottery several years in a row, it is possible. However, if this
would happen in real life, it would be clear that the lottery is rigged.
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To eliminate this discrepancy, Kolmogorov decided to formalize the intuitive no-
tion of randomness of a finite sequence. His idea was very straightforward:

• Why is a sequence 000...0 not possible? Because this sequence is very simple, it
can be obtained by running a very simple program.

• Similarly, a sequence 010101...01 can be computed by a very simple program:
just continue printing 01 in a loop.

• On the other hand, if we have a sequence of actual coin-flipping results, there
will be hardly any dependencies, so the only way to generate this sequence 011...
is to write something like print(011...). The length of such a program is about
the same as the length n = len(x) of the original binary sequence.

In other words:

• for a truly random sequence x, the length K(x) of the shortest program that gen-
erates this sequence is close to len(x): K(x)≈ len(x), while

• for a sequence which are not random, such length is much smaller:

K(x)� len(x).

This led Kolmogorov and other researchers to define a random sequence as a se-
quence for which K(x)≥ len(x)−C, for some appropriate constant C.

This definition depends on C.

• If we select C to be too small, we may miss a sequence which is actually random
and which accidentally has some dependencies.

• On the other hand, if we select C to be too large, we risk naming not-very-random
sequences as random.

So, instead of a single definition of what is random and what is not random, we get,
in effect, a degree of randomness of a sequence – gauged by the smallest value C
for which the above inequality holds. This smallest value, as one can easily check,
is equal to the difference C = len(x)−K(x).

• When this difference is small, the sequence is truly random.
• When this difference is large, the sequence is not so random.

Kolmogorov complexity and the related notion of randomness have indeed been
very useful, both in physics applications and in the analysis of algorithms; see, e.g.,
[5]. And if this notion was not invented by Kolmogorov – it was invented in the
1960s, at the same time as fuzzy logic – Zadeh’s principles could have helped in-
vent it.

3 Simplicity and Everything-Is-a-Matter-of-Degree Principles
Naturally Lead to the Main Ideas Behind Quantum Physics

Let us apply these principles to the description of the physical world. Fuzzy
logic originated by the observation that:
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• in most cases, we cannot say that someone is absolutely young or absolutely old;
• for most people, “young” is a matter of degree.

If we apply the same everything-is-a-matter-of-degree principle to the physical
world, we conclude that for every two possible states:

• we should not expect the system to be definitely in one state or definitely in
another state;

• in many cases, we should have a system which is, with some degree, in one state,
and with some degree, in another state.

How can we describe this in precise mathematical form? We have two original states
s1 and s2. Each state can be described by, e.g., the values of the corresponding
quantities, i.e., by a tuple si = (si1, . . . ,sin) of real numbers. We need a function that
transforms the two states into a new combined state.

From the mathematical viewpoint, the simplest functions are linear functions.
Thus, the simplest possible way to combine the two states is to have a linear com-
bination a1 · s1 +a2 · s2. This is exactly what in quantum physics (see, e.g., [2, 12])
is called superposition of the two states – with the only difference that in quantum
physics, the coefficients ai can be complex numbers.

The existence of such superposition is one of the main ideas behind quantum
physics – and the main idea behind quantum computing and its successes; see,
e.g., [8].

What is the dynamics here? To fully describe a physical phenomenon, it is not suf-
ficient to describe the current state, we need also to describe how this state changes
in time – i.e., what is the corresponding dynamics.

We thus need to describe how the state s of a physical system changes with

time, i.e., how the rate of change
ds
dt

depends on the state:
ds
dt

= F(s), for some

function F(s).
Which function F(s) should we select? For this selection, it is reasonable to use

the simplicity principle. As we have mentioned earlier, the simplest functions are
linear functions, so it is reasonable to use linear function F(s) – and this is exactly
what is happening in quantum physics, where the Schroedigner’s equation describes
the rate of change in a state as a linear function of this state [2, 12].

4 Simplicity and Everything-Is-a-Matter-of-Degree Principles
Naturally Lead to the Main Ideas Behind Deep Learning

How do we learn? Let us now go from the description of a physical world to the de-
scription of how we learn things about this world. First, according to the everything-
is-a-matter-of-degree principle, at each given moment of time, about each statement
about the world, we do not necessarily have a precise opinion. Mostly, we have a
degree of confidence about the given statement.
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How do these degrees of confidence change? The simplest possible functions, as
we have mentioned several times, are linear functions. So, a natural transformation
of degrees is linear.

The problem with using only linear transformations is that by combining several
linear transformations, we can only have linear functions – and some real-world
processes that we want to describe are not linear. So, we need some non-linear
transformations as well.

What are the simplest nonlinear transformations? First, in general, the more in-
puts, the more complex the transformation. From this viewpoint, the easiest are the
functions of one variable.

What are the simplest functions of one variable which are not linear? A natural
idea is to use functions which are piece-wise linear, i.e., for example, consist of two
parts on each of which they are linear. The simplest value separating the two parts
is 0, so we end up with a function s(x) which is equal to c− ·x for x≤ 0 and to c+ ·x
for x≥ 0, for some appropriate values c− and c+.

What are the simplest real numbers? Clearly, 0 and 1, so we end up with a func-
tion which is equal to 0 · x = 0 for x ≤ 0 and to 1 · x = x for x ≥ 0. This function
can be equivalently described as s(x) = max(0,x). So, we arrive at the following
description of the corresponding computational schemes.

We naturally arrive at deep learning. The input to the non-linear transformer
comes from a linear combination of inputs. So, we have transformations of the type

x1, . . . ,xn→max

(
0,

n

∑
i=1

wi · xi−w0

)

for appropriate wights wi. This is exactly the transformation performed by each
neuron in a deep neural network; see, e.g., [3]. Thus, by combining such transfor-
mations, we get the main structure of deep neural networks.

If instead of nonlinear functions of one variable, we allow nonlinear functions
of several variables, then the simplest are – like in fuzzy logic – min and max.
Such transformations form the basis of convolutional neural networks – another
component of (and type of) deep learning [3].

So, Zadeh’s ideas are in good accordance with deep learning as well.

5 What Next?

What next? There are two natural ideas.
First is to continue applying Zadeh’s ideas to other areas – and we will provide

an example of such application in the next section.
Another idea is to take into account that a degree does not have to be a single

number. We have already seen this in quantum physics – where the coefficients
ai are, in, general complex numbers a+ b · i, i.e., in effect, pairs of real numbers.
Similar ideas of using interval-valued and more general fuzzy degrees – i.e., degrees
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described by several numbers – have been successfully in fuzzy applications as well;
see, e.g., [6]. And even in applications like education, where traditionally the degree
of student’s knowledge was described by a single number, the new tendency is to
use several numbers, e.g., describing the degree of student’s knowledge of different
topic – and thus providing a more adequate description of the student’s knowledge;
see, e.g., [1].

6 Causality as a Matter of Degree

6.1 Motivations

Space-time causality is one of the fundamental notions of modern physics; however,
it is difficult to define in observational physical terms. Intuitively, the fact that a
space-time event e = (t,x) can causally influence an event e′ = (t ′,x′) means that
what we do in the vicinity of e changes what we observe at e′. If we had two copies
of the Universe, we could perform some action at e in one copy but not in another
copy; if we then observe the difference at e′, this would be an indication of causality.
However, we only observe one Universe, in which we either perform the action or
we do not. At first glance, it may seem that in this case, there is no meaningful
way to provide an operational definition of causality. In this section, we show that
such a definition is possible if we use the notions of algorithmic randomness and
Kolmogorov complexity. The resulting definition leads to a conclusion that space-
time causality is a matter of degree.

Comment. The main idea of this section first appeared in [4].

6.2 Defining Causality Is Important

Space-time causality is important. Causal relation between space-time events (i.e.,
points in space-time) is one of the fundamental notions of physics; see, e.g., [2, 7,
12]). Because of this, many fundamental physical theories describe, among other
things, the causal relation between space-time events.

According to modern physics, space-time causal relation is non-trivial. In New-
ton’s physics, it was assumed that influences can propagate with an arbitrary speed,
constituting, in effect, immediate action-at-a-distance. Under this assumption, an
event e= (t,x) occurring at moment t at location x can influence an event e′= (t ′,x′)
occurring at moment t ′ at location x′ if and only if the second event occurs later than
the first one, i.e., if and only if t < t ′.

In special relativity, the speeds of all the processes are limited by the speed of
light c. In this theory, an event e = (t,x) can influence an event e′ = (t ′,x′) if during
the time t ′− t, the faster possible process – light – can cover the distance d(x,x′)
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between locations x and x′, i.e., if

c · (t ′− t)≥ d(x,x′).

In the general relativity theory, the space-time is curved, so the corresponding
causal relation is even more complex. This relation is also complex in alternative
gravitation theories; see, e.g., [7].

Need for experimental verification of space-time casuality. Different theories, in
general, make different predictions about the causality. So, to experimentally verify
fundamental physical theories, we need to be able to experimentally verify the cor-
responding space-time causality. In other words, we must be able to experimentally
check, for every two space-time events a and b, whether the event a can causally
influence the event b.

Need for a theory-free verification of space-time causality. Since the space-time
causality is fundamental, more fundamental than specific partial differential equa-
tions that describe the physical fields and/or their relation with space-time, it is de-
sirable to be able to experimentally check this causality in a theory-free way, without
invoking other fields and corresponding differential equations.

In this section, we describe a possible way of such theory-free experimental val-
idation of space-time causality.

6.3 Defining Causality: Challenge

Intuitive meaning of space-time casuality. Intuitively, the fact that a space-time
event e can causally influence an event e′ means that:

• what we do in the vicinity of e
• changes what we observe at e′.

How to transform this meaning into a definition: a hypothetical idea. The above
intuitive meaning of space-time causality can easily lead to a observational defini-
tion if we had two (or more) copies of the Universe. In this case, to check that e can
causally influence e′, we could do the following (see, e.g., [9]):

• in one copy of the Universe, we perform some action at e, and
• we do not perform this action in the second copy of the Universe.

If the resulting states at e′ are different in the two copies of the Universe, this would
be an indication of causal relation between e and e′.

Comment. This interpretation of causality is known as a counterfactual interpreta-
tion; see, e.g., [10]. This name comes from the usual interpretation of counterfactual
statements, i.e., statements of the type “If we were born in Sahara, we would have
been better adjusted for the warm climate.” These statements are called counterfac-
tual because the premise (we are born in Sahara) contradicts to the facts. The usual
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interpretation of such statements is to consider not just our world, but also the whole
set of possible worlds. To check whether a counterfactual statement is true we se-
lect, among all possible worlds in which the premise is satisfied, the one which is the
closest to our own world. The statement is considered true if the conclusion holds
in this selected world.

Similarly, in the counterfactual interpretation of causality, instead of considering
only one world, we consider all possible worlds. We then say that e casually influ-
ences e′ if in every world in which e occurs, this occurrence affects e′. For example,
we want to check whether a rain dance (e) causes rain (e′). In our world, we observe
a rain dance, and we observe rain, but we cannot tell whether the rain was caused
by the rain dance or not. Intuitively, the way to check is to see if rain dances leads to
rain. So, in one possible world, we perform a rain dance, in another possible world,
we do not perform it. If, as a result, we see rain in the first world but not in the
second one, this is good indication that the rain dance indeed causes rain.

6 6

∗

∗

∗

∗

World 1 World 2

e e

e′ e′

rain dance no rain dance

rain no rain

Can we make this idea practical? In reality, we only observe one Universe, in
which we either perform the action or we do not.

At first glance, it may seem that in this case, there is no meaningful way to
provide an operational definition of space-time causality.

Our idea. In this section, we show that a meaningful operational definition of space-
time causality is possible if we use the notions of algorithmic randomness and Kol-
mogorov complexity. Before we explain our idea, let us briefly recall the corre-
sponding notions.

6.4 Algorithmic Randomness and Kolmogorov Complexity: A Brief
Reminder

The corresponding notion of independence. In probability theory, in addition to
analyzing what is random and what is not, it is also important to decide when the
two events are independent and when they are not. Once we have two finite binary
sequences x and y, the idea that y is independent on x can be described in a similar
way:

• if y is independent on x, then knowing x does not help us generate y;
• in contrast, if y depends on x, then knowing x can help us compute y.
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For example, if we know the locations and velocities x of a mechanical system at
some moment of time t, we can use this information to easily compute the locations
and velocities y at the next moment of time t +∆ t. In contrast, an irrelevant infor-
mation x (e.g., locations and velocities of particles on another planet) does not help
in computing y.

To formalize this intuition, we should consider programs that use x as an input to
generate y.

Definition 1. Let a programming language be fixed. By a relative Kolmogorov com-
plexity K(y |x) of a finite binary string y in relation to a binary string x, we mean
the shortest length of a program that, when using x as an input, generates y:

K(y |x) def
= min{len(p) : p(x) generates y}.

Comment. Intuitively, if using x helps to compute y, i.e., if K(y |x)� K(y), this
means that y depends on x. Vice versa, if using x does not help to compute y, i.e., if
K(y |x) ≈ K(y), this means that x and y are independent. We can describe this in a
way similar to the above definition of randomness:

Definition 2. Let an integer C > 0 be fixed.

• We say that a string y is independent of the string x if

K(y |x)≥ K(y)−C.

• We say that a string y is dependent on the string x if

K(y |x)< K(y)−C.

6.5 How to Define Space-Time Causality: Analysis of the Problem
and the Resulting Definition

First seeming reasonable idea. At first glance, the above notion of dependence can
already lead to a natural definition of space-time causality:

• First, we perform some measurements and observations in the vicinity of the
event e. Since most nowadays measuring instruments are computer-connected,
each such measurement produces a computer-readable output. In the computer,
everything is represented as a sequence of 0s and 1s, so the results of all the
measurements and observations will also be represented as a sequence x of 0s
and 1s.

• We also perform measurements and observations in the vicinity of the event e′,
and also produce a sequence x′ of 0s and 1s.

• If x′ depends on x, i.e., if K(x′ |x)� K(x′), then we claim that e can casually
influence e′.
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Unfortunately, this idea does not always work. Yes, if e can casually influence e′,
then we indeed expect that knowing what happened at e can help us predict what is
happening at e′. However, the inverse is not necessarily true: we may have identical
observations x = x′ at events e and e′ simply because they are both caused by the
same event e′′ from the joint past of events e and e′.

For example, if two people at different locations are watching the same movie,
then their observations are identical, but not because they causally influence each
other, but because they are both influenced by a past event e′′ (of making this movie).

How to transform the above idea into a working definition. According to mod-
ern physics, the Universe is quantum in nature. For many measurements involving
microscopic objects, we cannot predict the exact measurement results, we can only
predict probabilities of different outcomes. The actual observations are truly ran-
dom.

Moreover, for each space-time event e, we can always set up such random-
producing experiments in the small vicinity of e, and generate a random sequence re.
For example, we can locally set up a Stern-Gerlach experiment (see, e.g., [2, 12]), a
quantum experiment that generates a truly random sequence.

This random sequence can affect future results, so if we know this random se-
quence, it may help us predict future observations. So, if e can causally influence
e′, then for some observations x′ performed in the small vicinity of e′, we have
K(x′ |re)� K(x′).

However, it is clear that this sequence cannot affect the measurement results
which are in the past (or, more generally, not in the future) of the event e. So, if
e cannot causally influence e′, then observations x′ made in the vicinity of e′ are
independent on re: K(x′ |re) ≈ K(x′). So, we arrive at the following semi-formal
definition:

Definition 3. For each space-time event e, let re denote a random sequence that is
generated by an experiment performed in the small vicinity of e. We say that the
event e can causally influence the event e′ if for some observations x′ performed in
the small vicinity of e′, we have

K(x′ |re)� K(x′).

Historical comment. Our definition follows the ideas of casuality as mark transmis-
sion [10, 11], with the random sequence as a mark.

Discussion. We have argued that if e does not causally influence e′, then, no matter
what we measure in the vicinity of the event e′, we get K(x′ |re)≈K(x′); so, in these
cases, the above definition is in accordance with the physical intuition.

On the other hand, if e can causally influence e′, this means that we can send
a signal from e to e′, and as this signal, we send all the bits forming the random
sequence re. The signal x′ received in the vicinity of e′ will thus be identical to re,
so generating x′ based on re does not require any computations at all: K(x′ |re) = 0.
Since the sequence x′ = re is random, we have



12 Vladik Kreinovich, Olga Kosheleva, and Andres Ortiz-Muñoz

K(x′)≥ len(x′)−C.

For a sufficiently long random sequence re = x′, namely for a sequence for which
len(x′)> 2C, we have

K(x′)≥ len(x′)−C > 2C−C =C,

so
0 = K(x′ |re)< K(x′)−C

and thus,
K(x′ |re)� K(x′).

So, in these cases, the above definition is also in accordance with the physical intu-
ition.

6.6 Corollary of Our Definition: Space-Time Causality is a Matter
of Degree

Our definition of causality uses the notion of randomness: namely, we say that there
is a causal re/lation between e and e′ if for some random sequence re generated in
the vicinity of the event e and for measurement results x′ produced in the vicinity of
e′, we have K(x′ |re)< K(x′)−C for some large integer C.

The larger the integer C, the more confident we are that an event e can causally
influence e′. It is therefore reasonable, for each pair of events e and e′, to define a
degree of causality c as the largest integer C for which K(x′ |re) < K(x′)−C. One
can check that this largest integer is equal to the difference c = K(x′)−K(x′ |re)−1.
The largest this difference c, the more confident we are that e can influence e′. Thus,
this difference can serve as degree with which e can influence e′.

In other words, just like randomness turns out to be a matter of degree, causality
is also a matter of degree.

Corresponding open problems. It is desirable to explore possible physical mean-
ing of such “degrees of causality”: instead of describing the space-time causality,
we now have a function d(e,e′) that:

• for each pair of events for which e causally precedes e′,
• describes to what extent e can influence e′.

Maybe this function d(e,e′) is related to relativistic metric – the amount of proper
time between e and e′?

Another open problem is related to the fact that he above definition works for lo-
calized objects, objects which are located in a small vicinity of one spatial location.

In quantum physics, not all objects are localize in space-time. We can have situa-
tions when the states of two spatially separated particles are entangled. It is desirable
to extend our definition to such objects as well.
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6.7 Conclusions

In this section, we propose a new operationalist definition of causality between
space-time events. Namely, to check whether an event e can casually influence an
event e′, we:

• generate a truly random sequence re in the small vicinity of the event e, and
• perform observations in the small vicinity of the event e′.

If some observation results x′ (obtained near e′) depend on the sequence re (in the
precise sense of dependence described in the section), then we claim that e can
casually influence e′. On the other hand, if all observation results x′ are independent
on re, then we claim that e cannot casually influence e′.

This new definition naturally leads to a conclusion that space-time causality is a
matter of degree, a conclusion that is worth physical analysis.
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