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Abstract

Can we use some so-far-unused physical phenomena to compute some-
thing that usual computers cannot? Researchers have been proposing
many schemes that may lead to such computations. These schemes use
different physical phenomena ranging from quantum-related to gravity-
related to using hypothetical time machines. In this paper, we show that,
in principle, there is no need to look into state-of-the-art physics to develop
such a scheme: computability beyond the usual computations naturally
appears if we consider such a basic notion as randomness.

1 Introduction

While traditional computers have achieved great results, there are still many
important problems for which computations on current computers are too slow
— not to mention that there are many problem for which it has been proven
that they cannot be algorithmically solved on modern computers; see, e.g.,
[5, 6, 11]. To overcome this problem, many researchers and engineers are working
on making computers faster — and to achieve that goal, they are figuring out
if we can utilize additional physical processes. Several such schemes have been
proposed, using different physical phenomena ranging from quantum effects to
black holes to even hypothetical phenomena such as causal anomalies (time
machines); see, e.g., [1, 3, 4, 5, 6, 7, 10].

In this paper, we show that there is yet another potential way to new com-
putational abilities: namely, the use of physical randomness.

2 Randomness Is Important

In classical (pre-quantum) physics, randomness was mainly subjec-
tive. All the way to the beginning of the 20 century, all known laws of physics
were deterministic. A good example is Newton’s laws. Once we know the initial
positions and velocities of all the planets, we can predict — many years ahead —



where the planets will be at any future moment. This is not just a theoretical
possibility: astronomers did predict the planets’ positions with very high accu-
racy. This accuracy was indeed very high. For example, one of the motivations
for developing General Relativity was that the predicted position of Mercury
differed from the predicted one, with the difference growing by 43 arcseconds
per 100 years.

In that period, randomness was not in the physical theory itself, randomness
was used — starting with Gauss — to describe the fact that we do not know the
exact positions, the exact velocities, and in general, the exact values of other
physical characteristics. In other words, in those days, randomness was mainly
subjective, reflecting our lack of knowledge.

The appearance of objective randomness. At the beginning of the 19 cen-
tury, it became clear that, in addition to subjective randomness — that describes
our ignorance — there is also objective randomness, randomness which is essen-
tial for the corresponding physical process itself. The first such phenomenon
was radioactivity, when atoms emit high-energy particles. A radioactive ma-
terial such as radium consists of numerous absolutely identical atoms. If the
corresponding physics was deterministic, they would all emit the corresponding
particles at exactly the same time — but this is not what we observe. What we
observe is that at any given moment of time:

e some atoms remain stable, while
e other atoms emit the particles.

There is no regularity in which atoms are stable are which are not; in this sense,
the corresponding process is truly random.

According to modern physics, randomness is ubiquitous. Studies of
radioactivity and related phenomena led to the development of new physics —
quantum physics, according to which all real-life processes are probabilistic; see,
e.g., [2, 12]. Thus means, in particular, that, in general:

e it is not possible to predict future events,
e it is only possible to predict the probabilities of different future events.

When we repeat the same experiment with random results again and again, we
get a random sequence.

Randomness is also important to conciliate reversibility of physical
laws with irreversibility of many physical processes. Later, it turned
out that randomness is important already in the non-quantum approximation
to the true physics: namely, it is important so that we will be able to reconcile
physical equations with observations.

Why do we need to reconcile them? Because all fundamental physical equa-
tions, starting with Newton’s laws, are reversible: if we keep all the particles
where they are and reverse all the velocities, the system will reverse its trajectory



and eventually reach the original state. This is easy to show in the mathematical
level, this is easy to illustrate on the example of a simple mechanical system.

However, in real life, many processes are irreversible. If we break a cup,
there is no way to make the pieces come together into the original unbroken
shape. This seeming contradiction was known already to Boltzmann, the father
of statistical physics. The modern explanation for this seeming paradox is that,
in addition to equations, we also need to take into account initial conditions.
There may be some restrictions on these initial conditions, but within these
restrictions, we do not expect any additional regularities. In other words, the
initial conditions should be random.

This additional assumptions breaks the original symmetry between past and
future: when initial conditions are random, the resulting future state is not
random at all: e.g., if we start with a random distribution of matter, we end up
with the current hierarchical structure of galaxies, stars, etc.

3 How Can We Describe Randomness in Precise
Terms?

Need to go beyond the traditional probability theory. At first glance,
it may appear that the question raiseds in the title of this section have been
answered long time ago. Starting with Gauss, we have used probabilities to
describe randomness.

This is true, probability theory has indeed been very successful in describing
physical phenomena. However, as noticed already by Kolmogorov — the father
of modern probability theory — this theory deal with ensembles, with mass
phenomena. This is great, but physicists also deal with individual phenomena.
For example:

e If we measure the value of some quantity at consequent moments of time
and get 010101..., clearly we have a regular process — namely, a periodic
process.

e On the other hand, if we flip a coin several times — or perform some
quantum experiment with random outcomes — we get a sequence with
no regularities, a sequence that, from the physical (and commonsense)
viewpoint is random.

In formalizing the difference between the two cases, traditional probability the-
ory is of no help: according to this theory, there is no different between the
sequence 0101... and any other sequence — all these sequences have the same
probability 2=™, where n is the number of bits.

To describe this difference, Kolmogorov and other researchers came up with
a special notions of Kolmogorov complerity and algorithmic randomness; see,
e.g., [9]. Let us describe these notions.

Kolmorogov complexity and algorithmic randomness. What is the dif-
ference between a regular sequence like 0101... and a truly random sequence?



e A regular sequence like 01010..., no matter how long, can be generate by
a very short and simple program: it is sufficient to run a loop repeatedly
producing 01.

e On the other hand, the vert fact that a binary sequence is random means
that it has not regularities, no such short program is possible, and the
only way to general a random sequence 0110... of length n is to write
something like print(0110..). This program requires that we reproduce
the whole sequence, so its length (= number of bits) is close to n.

In other words:

e a regular sequence x of length len(z) = n can be generated by a short
program, a program whose length is much shorter than n;

e on other hand, the only to generate a random binary sequence z of length
n is to have a program whose length is close to n.

To formalize this idea, researchers came with the following notion of Kolmogorov
complezity K(zx) of a given string . We fix some universal programming lan-
guage, and we define K (z) as the length of the shortest program p that gener-
ates x:

K(z) ef min{len(p) : p generates z}.

According to the above arguments:
e for a regular sequence, K (z) < len(z);
e on the other hand, for a truly random sequence z, we have K (z) =~ len(x).

This leads to the following formal definition [8, 9]:

Definition 1. Let C be an integer. We say that a binary sequence x is C-
random if K(z) > len(x) — C.

4 Back to Physics

Back to physics. So, whenever we want to describe that some physical se-
quence is random, we formalize it as saying that this sequence is C-random
for some appropriate value C' (and, of course, for an appropriate selection of a
programming language).

One more thing about physics. Physicists usually believe that:
e if some phenomenon is never happening in the world,
e then there must be a reason for this never-happening.

This sounds natural. Interestingly, we can reverse this statement and formulate
a logically equivalent statement which may sound not as natural — that:



e if some phenomenon does not contradict any physical laws,
e this means that eventually, we will observe this phenomenon.

From this viewpoint, if the only restriction on a binary sequence (obtained
from observing a physically random phenomenon) is that this sequence should
be random (in the sense to Definition 1), this means that every sequence which
1s random according to this definition will eventually occur as a result of some
observation.

5 How Does This Affect Computations

If a sequence is not random, we will eventually find it out. Let us first
show that if a binary sequence x is not C-random, then we will eventually find it
out. Indeed, if the sequence z is not C-random, this means that its Kolmogorov
complexity K (z) is smaller than len(z) — C. By definition of the Kolmogorov
complexity, this means that there exists a program p of length

len(p) < len(z) — C

that generates the sequence x.

There are finitely many sequences of any given length. Thus, there are
finitely many programs p of length len(p) < len(xz) — C. So, all we have to do
is to start all these programs. If a sequence z is not truly random, one of these
programs will eventually generate « — and thus, we will know that this sequence
z is not C-random.

There is a physical way to check whether a given binary sequence is
C-random. Let us show that this enables us to decide, for each binary sequence
x, whether this sequence is C-random or not. To do that, we simultaneously
start two processes:

e in the first process (as described in the previous subsection), we run all
possible programs p of length len(p) < len(z) — C' and wait until one of
these programs generates the given sequence x;

e in the second process, we perform all possible measurements of random
phenomena and wait until in one of these measurements, we get exactly
the given sequence x.

As a result:

e If a sequence if not C-random, then one of the programs from the first
process will generate z and thus, we will know that the given sequence x
is not C-random.

e On other hand, if the sequence z is C-random, then, according to the
arguments from the previous section, it will eventually appear in some
observations — so we will know that this sequence x is C-random.



So, by using physical world, we will always be able to tell whether a given
sequence is C-random or not.

This may sound natural and simple, but without the use of physical
world, we cannot check C-randomness. Interestingly, the above simple
scheme enable us to solve the problem which is not algorithmically solvable on
a normal computer! Indeed, here is a simple proof.

Proposition 1. No algorithm is possible that, given a binary sequence x, checks
whether this sequence is C-random.

Proof. This proof uses a known auxiliary result that, for each C > 0 and for
each n, there exists a sequence z of length n for which K(x) > len(z) — C.

Indeed, by definition of Kolmogorov complexity, each binary sequence which
is not C-random, i.e., for which K(z) < len(z) — C' = n — C, can be generated
by a program of length < n—C —i.e., equivalently, of length < n—C —1. There
are:

e 2! = 2 binary strings of length 1,
e 22 = 4 strong of length 2, etc., and
e 27~C~1 gtrings of length n — C — 1.
Thus, overall, there are
21 422423 4 gon Ol —gn=C _9 o on=C

possible binary strings of length < n — C' — 1. Thus, there are less than 2"~¢
programs of length <n —C — 1.

e Each program generates only one output, so all these programs can gen-
erate < 27~ C different strings.

e On the other hand, there are 2" > 2"~ strings of length n.

Thus, some strings of length n are C-random.

On the set of all binary sequences of length n there is a natural order —
corresponding to the numerical values of these sequences interpreted as binary
numbers, so that:

e 00...0is 0,
e 00...01 is 1, etc., all the way to
e 11...1 which is 2™ — 1.

By using this order, among several possible C-random sequences of length n,
we can select one sequence 7, which corresponds to the binary sequence with
the smallest possible number.

Now, we are ready to prove the proposition by contradiction. Let us assume
that there exists a program P (of some length len(P)) that:



e given a binary sequence x,
e checks whether K (z) > len(z) — C.
Then, we can compute r, as follows:

e We enumerate all the numbers 0, 1, 2, ..., and for each number, we use
the program P to check whether this number is C-random.

e Once we reached the C-random number, we stop and output this number
— this will be the desired number r,,.

The resulting program R for computing r,, consists of:
e the program P and
e a few lines describing adding 1.

So, the length of the program R does not depend on n.

Hence, for large enough n, this length is < n — C — but it contradicts to the
definition of r, as one of the C-random sequences — i.e., by definition, sequences
which cannot be generated by any sequence whose length is smaller than n — C.

This contradiction shows that our assumption was wrong, and thus, indeed,
no algorithm is possible that:

e given a binary sequence x,
e checks whether this sequence is C-random.

The proposition is proven.

A word of caution. In principle, the above scheme allows us, by using the
physical world, to solve the general problem that cannot be algorithmically
solved only by existing computers. But is it practical? Not really — or, in more
optimistic way — not yet.

Indeed, the above procedure requires that, for each sequence = of length n,
we perform experiments until we encounter this sequence (or until we find a
short program generating this sequence). There are 2™ possible sequences of
length n. Most of them — as one can easily prove — are C-random. Thus to get
a given C-random sequence, we need between 1 and ~ 2" measurements. So, to
get the given sequence, on average, we will need to have ~ 0.5-2" measurements.
Thus, this procedure requires exponential time — and is, therefore, not feasible;
see [6, 11].

A word of hope. The above procedure is not practical yet. However, the fact
that such a procedure exists in the first place makes us hope that a feasible (or
at least more feasible) version of this procedure will be eventually found.
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