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Abstract

It is well known that repetition enhances learning; the question is:
when is a good time for this repetition? Several experiments have shown
that immediate repetition of the topic leads to better performance on
the resulting test than a repetition after some time. Recent experiments
showed, however, that while immediate repetition leads to better results
on the test, it leads to much worse performance in the long term, i.e.,
several years after the material have been studied. In this paper, we
use decision theory to provide a possible explanation for this unexpected
phenomenon.

1 Formulation of the Problem: How to Explain
Recent Observations Comparing Long-Term
Results of Immediate and Delayed Repetition

Repetitions are important for learning. A natural idea to make students
better understand and better learn the material is to repeat this material – the
more times we repeat, the better the learning results.
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This repetition can be explicit – e.g., when we go over the material once again
before the test. This repetition can ne implicit – e.g., when we give the students
a scheduled quiz on the topic, so that they repeat the material themselves when
preparing for this quiz.

When should we repeat? The number of repetitions is limited by the avail-
able time. Once the number of repetitions is fixed, it is necessary to decide
when should we have a repetition:

• shall we have it immediately after the students have studied the material,
or

• shall we have it after some time after this studying, i.e., after we have
studied something else.

What was the recommendation until recently. Experiments have shown
that repeating the material almost immediately after the corresponding topic
was first studied – e.g., by giving a quiz on this topic – enhances the knowledge
of this topic that the students have after the class as a whole. This enhancement
was much larger than when a similar quiz – reinforcing the students’ knowledge
– was given after a certain period of time after studying the topic.

New data seems to promote the opposite recommendation. This idea
has been successfully used by many instructors. However, a recent series of
experiments has made many researchers doubting this widely spread strategy.
Specifically, these experiments show that (see, e.g., [1] and references therein):

• while immediate repetition indeed enhances the amount of short-term
(e.g., semester-wide) learning more than a later repetition,

• from the viewpoint of long-term learning – what the student will be able
to recall in a few years (when he or she will start using this knowledge to
solve real-life problems) – the result is opposite: delayed repetitions lead to
much better long-term learning than the currently-fashionable immediate
ones.

Why? The above empirical result is somewhat unexpected, so how can we
explain it? We have partially explained the advantages of interleaving – a time
interval between the study and the repetition – from the general geometric
approach; see, e.g., [3, 5]. However, this explanation does not cover the difference
between short-term and long-term memories.

So how can we explain this observed phenomenon? We can simply follow the
newer recommendations, kind of arguing that human psychology is difficult, has
many weird features, so we should trust whatever the specialists tell us. This
may sound reasonable at first glance, but the fact that we have followed this path
in the past and came up with what seems now to be wrong recommendation –
this fact encourages us to take a pause, and first try to understand the observed
phenomenon, and only follow it if it makes sense.

This is exactly the purpose of this paper: to provide a reasonable explanation
for the observed phenomenon.
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2 Main Idea Behind Our Explanation: Using
Decision Theory

Main idea: using decision theory. Our memory is limited in size. We
cannot memorize everything that is happening to us. Thus, our brain needs
to decide what to store in a short-term memory, what to store in a long-term
memory, and what not to store at all.

How can we make this decision? There is a whole area of research called
decision theory that describes how we make decisions – or, to be more precise,
how a rational person should make decisions.

Usually, this theory is applied to conscientious decisions, i.e., decisions that
we make after some deliberations. However, it is reasonable to apply it also
to decisions that we make on subconscious level – e.g., to decisions on what to
remember and what not to remember: indeed, these decisions should also be
made rationally.

Decision theory: a brief reminder. To show how utility theory can be
applied to our situation, let us briefly recall the main ideas and formulas behind
decision theory; for details, see, e.g., [2, 4, 6, 7].

To make a reasonable decision, we need to know the person’s preferences. To
describe these preferences, decision theory uses the following notion of utility.
Let us denote possible alternatives by A1, . . . , An. To describe our preference
between alternatives in precise terms, let us select two extreme situations:

• a very good situation A+ which is, according to the user, much better
than any of the available alternatives Ai, and

• a very bad situation A− which is, according to the user, much worse than
any of the available alternatives Ai.

Then, for each real number p from the interval [0, 1], we can form a lottery –
that we will denote by L(p) – in which:

• we get the very good situation A+ with probability p and

• we get the very bad situation A− with the remaining probability 1− p.

Clearly, the larger the probability p, the more chances that we will get the very
good situation. So, if p < p′, then L(p′) is better than L(p).

Let us first consider the extreme cases p = 1 and p = 0.

• When p = 1, the lottery L(p) = L(1) coincides with the very good sit-
uation A+ and is, thus, better than any of the alternatives Ai; we will
denote this by Ai < L(1).

• When p = 0, the lottery L(p) = L(0) coincides with the very bad situation
A− and is, thus, worse than any of the alternatives Ai: L(0) < Ai.
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For all other possible probability values p ∈ (0, 1), for each i, the selection
between the alternative Ai and the lottery L(p) is not pre-determined: the
decision maker will have to select between Ai and L(p). As a result of this
selection, we have:

• either Ai < L(p),

• or L(p) < Ai,

• or the case when to the decision maker, the alternatives Ai and L(p) are
equivalent; we will denote this by Ai ∼ L(p).

Here:

• If Ai < L(p) and p < p′, then Ai < L(p′).

• Similarly, if L(p) < Ai and p′ < p, then L(p′) < Ai.

Based on these two properties, one can prove that for the probability ui
def
=

sup{p : L(p) < Ai}:

• we have L(p) < Ai for all p < ui and

• we have Ai < L(p) for all p > ui.

This “threshold” value ui is called the utility of the alternative Ai.
For every ε > 0, no matter how small it is, we have L(ui−ε) < Ai < L(ui+ε).

In this sense, we can say that the alternative Ai is equivalent to the lottery L(ui).
We will denote this new notion of equivalence by ≡: Ai ≡ L(ui). Because of
this equivalence, if ui < uj , this means that Ai < Aj . So, we should always
select an alternative with the largest possible value of utility.

This works well if we know exactly what alternative we will get. In practice,
when we perform an action, we may end up in different situations – i.e., with
different alternatives. For example, we may have alternatives of being wet with-
out an umbrella and being dry with an extra weight of an umbrella to carry,
but when we decide whether to take the umbrella or not, we do not know for
sure whether it will rain or not, so we cannot get the exact alternative. In
such situations, instead of knowing the exact alternative Ai, we usually know
the probability pi of encountering each alternative Ai when the corresponding
action if performed. If we know several actions like thus, which action should
we select?

Each alternative Ai is equivalent to a lottery L(ui) in which we get the very
good alternative A+ with probability ui and the very bad alternative A− with
the remaining probability 1 − ui. Thus, the analyzed action is equivalent to a
two-stage lottery in which:

• first, we select one of the alternatives Ai with probability pi, and then

• depending on which alternative Ai we selected on the first stage, we select
A+ or A− with probabilities, correspondingly, ui and 1− ui.
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As a result of this two-stage lottery, we end up either with A+ or with A−.
The probability of getting A+ can be computed by using the formula of full
probability, as u =

∑
i

pi ·ui. So, the analyzed action is equivalent to getting A+

with probability u and A− with the remaining probability 1− u. By definition
of utility, this means that the utility of the action is equal to u.

The above formula for u is exactly the formula for the expected value of the
utility. Thus, we conclude that the utility of an action is equal to the expected
value of the utility corresponding to this action.

Let us apply this to learning. If we learn the material, we spend some
resources on storing it in memory. If we do not learn the material, we may lose
some utility next tome when this material will be needed. So, whether we store
the material in memory depends on for which of the two possible actions – to
learn or not to learn – utility is larger (or equivalently, losses are smaller). Let
us describe this idea in detail.

3 So When Do We Learn: Analysis of the Prob-
lem and the Resulting Explanation

Notations. To formalize the above idea, let us introduce some notations.

• Let m denote the losses (= negative utility) needed to store a piece of
material in the corresponding memory (short-term or long-term).

• Let L denote losses that occur when we need this material but do not have
it in our memory.

• Finally, let p denote our estimate of the probability that this material will
be needed in the corresponding time interval (short-term time interval for
short-term memory or long-term time interval for long-term memory).

If we learn, we have loss m. If we do not learn, then the expected loss is equal
to p ·L. We learn the material if the second loss of larger, i.e., if p ·L > m, i.e.,
equivalently, if p > m/L.

Comment. Sometimes, students underestimate the usefulness of the studied
material, i.e., underestimate the value L. In this case, L is low, so the ratio
m/L is high, and for most probability estimates p, learning does not make
sense. This unfortunate situation can be easily repaired if we explain, to the
students, how important this knowledge can be – and thus, make sure that they
estimate the potential loss L correctly.

Discussion. For different pieces of the studied material, we have different ratios
m/L. These ratios do not depend on the learning technique. As we will show
later, the estimated probability pmay differ for different learning techniques. So,
if one technique consistently leads to higher values p, this means that, in general,
that for more pieces of material we will have p > m/L and thus, more pieces of

5



material will be learned. So, to compare two different learning techniques, we
need to compare the corresponding probability estimates p.

Let us formulate the problem of estimating the corresponding probability p
in precise terms.

Towards a precise formulation of the probability estimation problem.
In the absence of other information, to estimate the probability that this mate-
rial will be needed in the future, the only information that our brain can use is
that there were two moments of time at which we needed this material in the
past:

• the moment t1 when the material was first studied, and

• the moment t2 when the material was repeated.

In the immediate repetition case, the moment t2 was close to t1, so the difference
t2 − t1 was small. In the delayed repetition case, the difference t2 − t1 is larger.

Based on this information, the brain has to estimate the probability that
there will be another moment of time during some future time interval. How
can we do that?

Let us first consider a deterministic version of this problem. Before we
start solving the actual probability-related problem, let us consider the following
simplified deterministic version of this problem:

• we know the times t1 < t2 when the material was needed;

• we need to predict the next time t3 when the material will be needed.

We can reformulate this problem in more general terms:

• we observed some event at moments t1 and t2 > t1;

• based on this information, we want to predict the moment t3 at which the
same event will be observed again.

In other words, we need to have a function t3 = F (t1, t2) > t2 that produces
the desired estimate.

What are the reasonable properties of this prediction function? The
numerical value of the moment of time depends on what unit we use to measure
time – e.g., hours, days, or months. It also depends on what starting point
we choose for measuring time. We can measures it from Year 0 or – following
Muslim or Buddhist calendars – from some other date.

If we replace the original measuring unit with the new one which is a times
smaller, then all numerical values will multiply by a: t→ t′ = a ·t. For example,
if we replace seconds with milliseconds, all numerical values will multiply by
1000, so, e.g., 2 sec will become 2000 msec. Similarly, if we replace the original
starting point with the new one which is b units earlier, then the value b will be
added to all numerical values: t→ t′ = t+b. It is reasonable to require that the
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resulting prediction t3 not depend on the choice of the unit and on the choice
of the starting point. Thus, we arrive at the following definitions.

Definition 1. We say that a function F (t1, t2) is scale-invariant if for every
t1, t2, t3, and a > 0, if t3 = F (t1, t2), then for t′i = a · ti, we get t′2 = F (t′1, t

′
2).

Definition 2. We say that a function F (t1, t2) is shift-invariant if for every t1,
t2, t3, and b, if t3 = F (t1, t2), then for t′i = ti + b, we get t′2 = F (t′1, t

′
2).

Proposition 1. A function F (t1, t2) > t2 is scale- and shift-invariant if and
only if it has the form F (t1, t2) = t2 + α · (t2 − t1) for some α > 0.

Proof. Let us denote α
def
= F (−1, 0). Since F (t1, t2) > t2, we have α > 0.

Let t1 < t2, then, due to scale-invariance with a = t2 − t1 > 0, the equality
F (−1, 0) = α implies that F (t1 − t2, 0) = α · (t2 − t1). Now, shift-invariance
with b = t2 implies that F (t1, t2) = t2 +α · (t2− t1). The proposition is proven.

Discussion. Many physical processes are reversible: if we have a sequence
of three events occurring at moments t1 < t2 < t3, then we can also have a
sequence of events at times −t3 < −t2 < −t1. It is therefore reasonable to
require that:

• if our prediction works for the first sequence, i.e., if, based on t1 and t2,
we predict t3,

• then our prediction should work for the second sequence as well, i.e. based
on −t3 and −t2, we should predict the moment −t1.

Let us describe this requirement in precise terms.

Definition 3. We say that a function F (t1, t2) is reversible if for every t1, t2.
and t3, the equality F (t1, t2) = t3 implies that F (−t3,−t2) = −t1.

Proposition 2. The only scale- and shift-invariant reversible function F (t1, t2)
is the function F (t1, t2) = t2 + (t2 − t1).

Comment. In other words, if we encounter two events separated by the time
interval t2 − t1, then the natural prediction is that the next such event will
happen after exactly the same time interval.

Proof. In view of Proposition 1, all we need to do is to show that for a reversible
function we have α = 1. Indeed, for t1 = −1 and t2 = 0, we get t3 = α. Then,
due Proposition 1, we have F (−t3,−t2) = F (−α, 0) = 0 + α · (0− (−α)) = α2.
The requirement that this value should be equal to −t1 = 1 implies that α2 = 1,
i.e., due to the fact that α > 0, that α = 1. The proposition is proven.

From simplified deterministic case to the desired probabilistic case.
In practice, we cannot predict the actual time t3 of the next occurrence, we
can only predict the probability of different times t3. Usually, the corresponding
uncertainty is caused by a joint effect of many different independent factors. It
is known that in such situations, the resulting probability distribution is close
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to Gaussian – this is the essence of the Central Limit Theorem which explains
the ubiquity of Gaussian distributions; see, e.g., [8]. It is therefore reasonable
to conclude that the distribution for t3 is Gaussian, with some mean µ and
standard deviation σ.

There is a minor problem with this conclusion; namely:

• Gaussian distribution has non-zero probability density for all possible real
values, while

• we want to have only values t3 > t2.

This can be taken into account if we recall that in practice, values outside a
certain kσ-interval [µ − k · σ, µ + k · σ] have so little probability that they are
considered to be impossible. Depending on how low we want this probability to
be, we can take k = 3, or k = 6, or some other value k. So, it is reasonable to
assume that the lower endpoint of this interval corresponds to t2, i.e., that µ−k ·
σ = t2. Hence, for given t1 and t2, once we know µ, we can determine σ. Thus,
to find the corresponding distribution, it is sufficient to find the corresponding
value µ.

As this mean value µ, it is reasonable to take the result of the deterministic
prediction, i.e., µ = t2 + (t2 − t1). In this case, from the above formula relating
µ and σ, we conclude that σ = (t2 − t1)/k.

Finally, an explanation. Now we are ready to explain the observed phe-
nomenon.

In the case of immediate repetition, when the difference t2−t1 is small, most
of the probability – close to 1 – is located is the small vicinity of t1, namely in
the kσ interval which now takes the form [t2, t2 + 2(t2− t1)]. Thus, in this case,
we have:

• (almost highest possible) probability p ≈ 1 that the next occurrence will
have in the short-term time interval and

• close to 0 probability that it will happen in the long-term time interval.

Not surprisingly, in this case, we get:

• a better short-term learning than for other learning strategies, but

• we get much worse long-term learning.

In contrast, in the case of delayed repetition, when the difference t2 − t1 is
large, the interval [t2, t+ 2(t2− t1)] of possible values t3 spreads over long-term
times as well. Thus, here:

• the probability p to be in the short-time interval is smaller than the value
≈ 1 corresponding to immediate repetition, but

• the probability to be in the long-term interval is larger that the value ≈ 0
corresponding to immediate repetition.
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As a result, for this learning strategy:

• we get worse short-term learning but

• we get much better long-term learning,

exactly as empirically observed.
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