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Abstract Joule’s Energy Conservation Law was the first “meta-law”: a gen-
eral principle that all physical equations must satisfy. It has led to many
important and useful physical discoveries. However, a recent analysis seems
to indicate that this meta-law is inconsistent with other principles – such as
the existence of free will. We show that this conclusion about inconsistency is
based on a seemingly reasonable – but simplified – analysis of the situation.
We also show that a more detailed mathematical and physical analysis of the
situation reveals that not only Joule’s principle remains true – it is actually
strengthened: it is no longer a principle that all physical theories should satisfy
– it is a principle that all physical theories do satisfy.

Keywords Joule · Energy Conservation Law · Free will · General Relativity ·
Planck’s constant

1 Introduction

Joule’s Energy Conservation Law: historically the first meta-law.
Throughout the centuries, physicists have been trying to come up with equa-
tions and laws that describe different physical phenomenon. Before Joule, how-
ever, there were no general principle that restricted such equations.

James Joule showed, in [10–12], that different physical phenomena are
inter-related, and that there is a general principle covering all the phenom-
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ena. Specifically, he showed that energy can be transformed from one type to
another – e.g., from mechanical energy to heat, and that in all these transac-
tions, the overall energy is conserved.

This Energy Conservation Law became the first “meta-law”, the first gen-
eral principle that restricts possible physical theories.

Joule’s meta-law in the 20 century: it led to important physical
discoveries. This meta-principle turned out to be very helpful for working
physics: by restricting possible physical theories, it helped find the correct
ones.

A classical example of this help is the discovery of neutrinos; see, e.g., [5,
23]. Specifically, it has been known that while combined neutrons and protons
form stable atomic nuclei, stand-alone neutrons are not stable: they decay
into protons, emitting electrons in the process. The puzzling problem was
that the total energy of the resulting proton and electron is smaller than the
energy of the original neutron – which seemingly contradicted to the energy
conservation law. To preserve this law, Fermi conjectured that a yet unknown
particle – which he called “small neutron” (neutrino in Italian) was capturing
(“stealing”) the missing energy, in what was later called an urca-process, after
the Russian slang word for a small thief. And yes, neutrinos were later found
– so the Energy Conservation Law not only survived, one again it proved to
be very helpful for working physics.

Joule’s meta-law in the 20 century: it naturally follows from symme-
tries. In the 20th century, Noether’s Theorem showed that energy conservation
is indeed a fundamental principle – since it follows from the natural idea that
in fundamental physical equations, there is no fixed moment of time, and that
thus all physical equations should not change if we simply select a different
starting point for measuring time [5,16,23].

What we do in this paper: detailed analysis of Joule’s meta-law
reveals unexpected subtleties. In this paper, we show that from the view-
point of 20th century physics – quantum mechanics and relativity theory – the
situation with energy conservation is not so simple.

First, in Section 2, following [13], we show that if we try to introduce a
natural idea of freedom of will into quantum physics, we naturally get non-
conservation of energy (which, in its turn, as we show in Section 3 – following
[15] – leads to Planck’s constant becoming a new physical field).

At first glance, this conclusion may seem to “kill” Joule’s meta-law. How-
ever, the situation is not so simple. First, as we show in Section 4 – following
[14] – it is important to distinguish between the usual mathematical formu-
lation and the physical meaning of energy conservation. To get an adequate
physical meaning we need to also take into account relativistic effects. As we
show in Section 5, if we relativize a theory of a field or a system whose energy
is not conserved, then all we get is a very strong gravitational field – that
compensated for the decreased energy of the original field.

In other words, in the relativistic version of the original theory, energy
does not disappear, it simply gets transformed into the gravitational energy
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– just like in Joule’s experiments, mechanical energy and heat energy got
transformed into each other. So not only Joule’s principle becomes valid again
– this principle is strengthened. It is no longer a principle that all physical
theories should satisfy – it is a principle that all physical theories do satisfy.

2 Free Will and Energy Conservation: A Seeming Contradiction

A brief overview of this section. Modern physical theories are determin-
istic in the sense that:

– once we know the current state of the world,
– we can, in principle, predict all the future states.

This was true for classical (pre-quantum) theories, this is true for modern
quantum physics. On the other hand, we all know that we can make decision
that change the state of the world – even if, for most of us, a little bit. This
intuitive idea of free will permeates all our life, all our activities – and it seems
to contradict the determinism of modern physics. It is therefore desirable to
incorporate the idea of free will into physical theories. In this paper, we show
that in quantum physics, free will leads to non-conservation of energy. This
non-conservation is a microscopic purely quantum effect, but it needs to be
taken into account in future free-will quantum theories.

Physics is mostly deterministic. Traditionally, in physics, the state of
world changes with time in accordance with appropriate differential equations;
see, e.g., [5]. For example:

– in Newton’s mechanics, we can use Newton’s equations;
– to describe the changes in the electromagnetic field, we can use Maxwell’s

equations;
– to describe the changes in the state ψ of a quantum system, we can use

Schrödinger’s equations

i · h̄ · dψ
dt

= Hψ, (1)

in which H is an operator describing the total energy of the system.

In all these situations, once we know the state of the world at some moment
of time t0, we can uniquely determine its future state.

It is important to take free will into account when describing the
physical world. In physics, the future state of the world is pre-determined.
This pre-determination contradicts our intuitive understanding that we hu-
mans have free will, that often, we can make decisions, and the outcomes of
these decisions are not pre-determined: depending on what we decide, the state
of the world will change.

Free will is not just an abstract philosophical viewpoint, it is a practi-
cal notion that guides our lives and our behavior. It is therefore desirable to
modify physics to avoid this disturbing contradiction between physics and our
everyday behavior; see, e.g., [1–4,6–9,18,20–22,24–26] and references therein.
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In classical (pre-quantum) physics, it is relatively easy to come up
with equations that allow free will. Let us start with the situation in clas-
sical (pre-quantum) physics. Let us start with simple physical systems, such
as point particles, whose state s(t) at any given moment of time t can be de-
scribed by describing the values of finitely many quantities s1(t), . . . , sn(t). For
example, in the original Newton’s approximate description of celestial bodies
as points, to describe the state of each body, it is sufficient to describe the cur-
rent values x1, x2, and x3 of its three spatial coordinates, three components v1,
v2, and v3 of the current velocity, and the body’s mass m. In electrodynamics
of point particles, we need to add electric change q to the list of these quan-
tities. To describe a system of several interacting points, we need to describe
the quantities describing each of these points.

Dynamical equations describe how each of these quantities change:

dsi
dt

= fi(s1, s2, . . .).

For example, in Newton’s celestial mechanics, such equations describe how the

corresponding parameters x
(j)
i , v

(j)
i , and m(j) of different bodies j = 1, 2, . . .

change:

dx
(j)
i

dt
= v

(j)
i ;

dm(j)

dt
= 0;

dv
(j)
i

dt
= G ·

∑
k 6=j

m(k) · (x(k)i − x(j)i )√(
x
(k)
1 − x(j)1

)2
+
(
x
(k)
2 − x(j)2

)2
+
(
x
(k)
3 − x(j)3

)2 ,
where G is the gravitation constant.

If we take freedom of will into account, then the change in the state
dsi
dt

is

no longer uniquely determined by the current state s(t). So, to determine the
desired change, we also need to describe the values of some other quantities
w1, . . ., which we can set arbitrarily because of our freedom of will:

dsi
dt

= fi(s1, s2, . . . , w1, . . .).

There is no differential equations for describing how the quantities wk change,
since we can change them at will.

When the effect of the new quantities is small, we get a small change in
the original physical theory.

In quantum physics, the situation is drastically different. In quantum
physics, the situation is different. In quantum physics, the state of the world
at any given moment of time t is described by a wave function ψ(t), and the
change in this state is described by Schrödinger’s equation (1). In this equation,
the change is determined by the Hamilton operator H that describes the total
energy of the system.



Joule’s Meta-Law: 21st Century Analysis 5

So, if we want to allow non-determinism, if we want the ability to change

the derivative
dψ

dt
, we have to be able to change the Hamilton operator.

How this leads to non-conservation of energy. In quantum case, as
we have concluded, freedom of will means that we can modify the Hamilton
operator, the operator that described the total energy of the system. What
does it mean that the Hamilton operator changes? It means for the some
states, the energy value changes. Thus, in effect, in quantum physics, freedom
of will means that, by exercising our will, we can change the total energy of
the system. In other words, in quantum physics, free will seems to lead to
non-conservation of energy.

How big is expected energy non-conservation? As we have mentioned
earlier, in classical (pre-quantum) effect freedom of will does not necessarily
lead to energy non-conservation. Thus, energy non-conservation caused by the
freedom of will is a purely quantum effect, that disappears in the classical limit,
when the Planck’s constant h̄ tends to 0. So, this purely quantum effect should
be proportional to h̄ and thus, it should be reasonably small. This smallness
explains why this effect have not been observed: in our usual free-will decisions,
we control macro-size objects, objects for which the quantum-size microscopic
changes in energy are not easy to measure.

Conclusion. To make sure that physics is in better accordance with our in-
tuition and our everyday experience, it is important to incorporate freedom of
will into physical theories. Current physical theories are all based on quantum
mechanics; it is therefore necessary to incorporate freedom of will into quan-
tum physics. In this section, we show that this incorporation seems to lead to
an unexpected observable effect: non-conservation of energy.

This non-conservation is a purely quantum effect, it is microscopically small
for macro-objects, but it needs to be taken into account in future free-will
quantum theories.

3 Auxiliary Result: If Energy Is Not Conserved, then Planck’s
Constant Is No Longer a Constant

A brief overview of the section. For any physical theory, to experimen-
tally check its validity, we need to formulate an alternative theory and check
whether the experimental results are consistent with the original theory or with
an alternative theory. In particular, to check whether energy is conserved, it is
necessary to formulate an alternative theory in which energy is not conserved.
Formulating such a theory is not an easy task in quantum physics, where
the usual Schroedinger equation implicitly assumes the existence of an energy
(Hamiltonian) operator whose value is conserved. In this paper, we show that
the only way to get a consistent quantum theory with energy non-conservation
is to use Heisenberg representation in which operators representing physical
quantities change in time. We prove that in this representation, energy is
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conserved if and only if Planck’s constant remains a constant. Thus, an appro-
priate quantum analogue of a theory with non-conserved energy is a theory in
which Planck’s constant can change – i.e., is no longer a constant, but a new
field.

3.1 Formulation of the Problem

Every physical law needs to be experimentally tested. Physics is a
rapidly changing science, new discoveries are being made all the time, exper-
imental discoveries that are often inconsistent with the existing physics and
which lead to a development of new physical theories. Testing the existing
physical theories is one of the main ways how physics evolves.

How physical laws can be experimentally tested. To test a physical law,
we must:

– formulate an alternative theory in which this law is not valid (while others
are valid),

– find a testable experimental situation in which the predictions of this al-
ternative theory differ from the predictions of the original theory, and then

– experimentally check which of the two theories is correct.

Example. This is how the General Relativity theory (alternative at that time)
was experimentally tested: by experimentally comparing the predictions of
Newton’s gravitation theory – the prevalent theory of that time – with the
predictions of the alternative theory; see, e.g., [17].

How can we test energy conservation law? A problem. One of the fun-
damental physical laws is the energy conservation law. At first glance, checking
this law is easy: even on the level of Newton’s physics, with the usual equations
of motion

d2xi
dt2

=
1

m
· fi, (2)

relating acceleration
d2xi
dt2

with the force fi, there are many non-potential force

fields fi(x) in which energy is not conserved.
The problem appears when we take quantum effects into account, i.e., when

we consider the quantum equations. In quantum physics, the main equation –
originally formulated by Schroedinger – has the form (see, e.g., [5])

i · h̄ · ∂ψ
∂t

= Hψ, (3)

where i
def
=
√
−1, ψ(x) is the wave function describing the quantum state, and

H is a so-called Hamiltonian, an operator describing the energy of a state. In
a non-potential force field, there is no well-defined notion of a total energy and
thus, it is not possible to write down the corresponding quantum equation.

Discussion. The need to test the energy conservation law on quantum level
is not purely theoretical:
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– on a pragmatic level, serious physicists considered the possibility of micro-
violations of energy conservation starting from the 1920s [5];

– as the previous section shows, on a more foundational level, the intuitive
ideas of free will seem to lead to possible energy non-conservation.

What we do in this section. In this section, we show how to form a quantum
theory in which energy is not conserved. Specifically, we show that for quantum
theories, energy non-conservation is equivalent to changing Planck’s constant.
Thus, in quantum physics, checking whether energy is conserved is equivalent
to checking whether Planck’s constant changes.

3.2 Analysis of the Problem

Schroedinger and Heisenberg representations of quantum physics:
reminder. In quantum physics (see, e.g., [5]), states are described by elements
of a Hilbert space – e.g., of the space of all square-integrable functions ψ(x) –
and physical quantities are described by linear operators in this space.

Historically, quantum physics started with a description by Heisenberg, in
which states are fixed but operators change. Very soon, it turned out that
in most cases, an alternative representation is more computationally advanta-
geous – a representation in which operators are fixed but states change. This
representation was originally proposed by E. Schroedinger and is therefore
known as the Schroedinger representation.

Since we cannot use Schroedinger’s representation, we will use the
Heisenberg one. As we have mentioned, the Schroedinger’s equation implic-
itly assumes the existence of (conserved) energy. Thus, to describe situations
in which energy is not conserved, it is reasonable to use the Heisenberg repre-
sentation.

Heisenberg representation: first approximation. In the Heisenberg rep-

resentation, physical quantities like coordinates xi and components pi
def
=

m · dxi
dt

of the momentum vector are represented by operators. In the first

approximation, the usual quantum mechanics is described by the usual New-
ton’s equations

dxi
dt

=
1

m
· pi,

dpi
dt

= fi, (4)

with the only difference that instead of scalars xi and pi, we now consider
operators. This description was first found by P. Ehrenfest (see, e.g., [5]).

The difference between the scalars and operators is that operators, in gen-
eral, do not commute, i.e., in general, for two operators a and b, we have

[a, b]
def
= ab − ba 6= 0. Specifically, in the usual quantum physics, operators

xi and xj corresponding to different coordinates commute with each other,
operators pi and pj commute with each other, but operators xi and pi do not
commute:

[xi, xj ] = 0, [pi, pj ] = 0, [pi, xj ] = i · h̄ · δij , (5)
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where the Kronecker’s delta δij is equal to 1 when i = j and to 0 otherwise. For
the usual energy-preserving quantum mechanics, these commuting relations
get conserved as the operators xi and pi change in time – in accordance with
Ehrenfest equations (4).

In the first approximation, the commutator [a, b] can be described in terms
of the Poisson brackets (see, e.g., [5]). Namely, for arbitrary functions a(x, p)
and b(x, p) of coordinates x = (x1, x2, x2) and momentum p = (p1, p2, p3), we
have

[a, b] = i · h̄ · {a, b}+ o(h̄), (6)

where

{a, b} def
=
∑
k

(
∂a

∂pk
· ∂b
∂xk
− ∂a

∂xk
· ∂b
∂pk

)
. (7)

As an example, let us show what happens for the Heisenberg commutator
[a, b] for which a = pi and b = xj . Since a = pi depends only on pi, we have
∂pi
∂pk

= δik and
∂pi
∂xk

= 0. Similarly, since b = xj depends only on xj , we have

∂xj
∂pk

= 0 and
∂xj
∂xk

= δjk. Thus,

{pi, xj} =
∑
k

δik · δjk = δij .

When the force comes from a potential field, Planck’s constant is
conserved. Let us show that in the potential field with potential energy V (x),

when fi = − ∂V
∂xi

, Planck’s constant is conserved. Indeed, let us assume that the

commuting relations (5) hold at a certain moment of time t0. In particular,
this means that [pi, xj ] = i · h̄ · δij . Let us show that – at least in the first

approximation – this relation is conserved, in the sense that
d

dt
[pi, xj ] = 0.

First, we should note that since [a, b] = ab− ba, we have

d

dt
([a, b]) =

d

dt
(ab− ba) =

da

dt
b+ a

db

dt
− db

dt
a− bda

dt
=

[
da

dt
, b

]
+

[
a,
db

dt

]
.

Thus, we have
d

dt
([pi, xj ]) =

[
dpi
dt
, xj

]
+

[
pi,

dxj
dt

]
Due to Ehrenfest equations, we have

dpi
dt

= fi and
dxi
dt

=
1

m
· pi, we have

d

dt
([pi, xj ]) = [fi, xj ] +

1

m
· [pi, pj ]. (8)

Since fi depend only on the coordinates, and all coordinate operators com-
mute, we have [fi, xj ] = 0. Since all the components of the momentum com-

mute, we have [pi, pj ] = 0. Thus, we conclude that
d

dt
([pi, xj ]) = 0.
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Similarly, we can conclude that the second derivative of the Heisenberg
commutator is also equal to 0. Indeed, by differentiating both sides of the
equation (8), we conclude that

d2

dt2
([pi, xj ]) =

[
dfi
dt
, xj

]
+

1

m
· [fi, pj ] +

1

m
· [fi, pj ] +

1

m
· [pi, fj ] . (9)

Here, since fi depends only on coordinates, we have

dfi
dt

=
∑
`

∂fi
∂x`
· dx`
dt

=
1

m
·
∑
`

∂fi
∂x`
· p`,

so
d2

dt2
([pi, xj ]) =

1

m
·

([∑
`

∂fi
∂x`
· p`, xj

]
+ 2[fi, pj ] + [pi, fj ]

)
.

Thus, to prove that this second derivative is equal to 0, it is sufficient to prove
that the expression in parentheses is equal to 0. In the first approximation, this
expression is proportional to the sum S of the corresponding Poisson brackets

S =

{∑
`

∂fi
∂x`
· p`, xj

}
+ 2{fi, pj}+ {pi, fj};

so, in the first approximation, it is sufficient to prove that the sum S is equal
to 0. In the first bracket, xj depends only on xj , so{∑

`

∂fi
∂x`
· p`, xj

}
=
∑
k

∑
`

∂fi
∂x`
· δk` · δjk =

∂fi
∂xj

.

For the second term of the sum S, since pj only depends on the momentum,
we get

{fi, pj} = −
∑
k

∂fi
∂xk
· δjk = − ∂fi

∂xj
.

Similarly,

{pi, fj} =
∂fj
∂xi

.

Thus, we have

S =
∂fj
∂xi
− ∂fi
∂xj

.

For the potential field, we have fi = − ∂V
∂xi

and therefore,

∂fi
∂xj

= − ∂2V

∂xi∂xj
.

Hence, we have

S = − ∂2V

∂xi∂xj
+

∂2V

∂xi∂xj
= 0.
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What happens when energy is not conserved: an example. We are
interested in situations where energy is not conserved. Let us start our analysis
with the simplest such situation of the friction force fi = −k · vi, i.e., force of

the type fi = −k0 · pi, where k0
def
=

k

m
. In this case, from the formula

d

dt
([pi, xj ]) = [fi, xj ] +

1

m
· [pi, pj ],

by using [pi, pj ] = 0, we get

d

dt
([pi, xj ]) = −k0 · [pi, xj ].

In other words, for h
def
= [pi, xi], we have a differential equation

dh

dt
= −k0 · h.

From this equation, we conclude that
dh

h
= −k0 ·dt hence ln(h) = const−k0 ·t,

and h(t) = const · exp(−k0 · t). We know that h(t0) = i · h̄, hence

h(t) = h(t0) · exp(−k0 · (t− t0)).

At the initial moment t0, we have h(t0) = i · h̄. So, the above equation

means, in effect, that Planck’s constant h̄
def
=

[pi, xi]

i
is no longer a constant –

it exponentially decreases with time.

Discussion. Let us show that the same phenomenon – of Planck’s constant
no longer being a constant – occurs for every theory in which energy is not
conserved.

3.3 Main Result

Formulation of the main result. Let us consider the general case, when
each component fi of a force is a function of coordinates x and momentum p.
We will show that if in the quantum version of this theory, Planck’s constant
remains a constant, i.e., we have [pi, xj ] = i · h̄ · δij for all moments of time,

then the field fi is a potential field, i.e., has the form fi = − ∂V
∂xi

for some

function V (x).
This means that if fi is not a potential field, then Planck’s constant is no

longer a constant.
Proof. If Planck’s constant is a constant, this means, in particular, that we

have
d

dt
([pi, xj ]) = 0. Explicitly differentiating the left-hand side, we conclude
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that [fi, xj ] +
1

m
· [pi, pj ] = 0. Since [pi, pj ] = 0, we get [fi, xj ] = 0. In the first

approximation, this means that the corresponding Poisson bracket is equal to
0: {fi, xj} = 0. Since xj depends only on the coordinate, we get

{fi, xj} =
∑
k

∂fi
∂pk
· δkj =

∂fi
∂pj

= 0.

The fact that all partial derivatives of fi relative to pj are equal to 0 means that
fi does not depend on the momentum. In other words, the force fi depends
only on the coordinates xj .

Now, since we know that fi depend only on the coordinates, for the sec-

ond time derivative
d2

dt2
([pi, xj ]), we can repeat arguments from the previous

section and conclude that in the first approximation, this second derivative is
proportional to

S =
∂fj
∂xi
− ∂fi
∂xj

.

So, from the fact that the second derivative is equal to 0, we conclude that
S = 0, i.e., that

∂fi
∂xj

=
∂fj
∂xi

for all i and j. It is known that these equalities are necessary and sufficient

conditions for the existence of a field V for which fi = − ∂V
∂xi

. Thus, we have

proved that fi is indeed a potential field.
The conclusion has been proven.

Discussion. Theories in which Planck’s constant is no longer a constant but
a new physical field s(x) have been proposed; see, e.g., [19].

It should be mentioned that we may need to go beyond the proposed theory:
indeed, these theories only consider a scalar field s(x) corresponding to

[pi, xj ] = i · h̄ · s(x) · δij ,

while, in general, the commutator [pi, xj ] can be an arbitrary tensor.

4 Analysis of the Problem: We Should Distinguish Between the
Usual Mathematical Formulation and the Physical Meaning of
Energy Conservation

A brief overview of this section. In most physical theories, total energy
is conserved. For example, when the kinetic energy of a particle decreases,
the potential energy increases accordingly. For some physical systems, energy
is not conserved. For example, if we consider a particle moving with friction,
the energy of the particle itself is not conserved: it is transformed into ther-
mal energy of the surrounding medium. For simple systems, energy is easy to
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define. For more complex physical systems, such a definition is not easy. To
describe energy of generic systems, physicists came up with a general notion of
energy based on the Lagrangian formalism – a minimal-action representation
of physical theories which is now ubiquitous. For many physical theories, this
notion leads to physically meaningful definitions of energy. In this section, we
show that there are also examples when the Lagrangian-motivated notion of
energy is not physically meaningful at all – e.g., according to this definition,
all dynamical systems are energy-conserving.

4.1 Energy Conservation: Physical Meaning and Lagrangian-Based
Description

Energy conservation: physical meaning. Some physical systems are con-
servative in the sense that their total energy is preserved. For example, the
dynamics of a particle in a potential field V (x) = V (x1, x2, x3) is described,
in Newtonian mechanics, by Newton’s equations

m · ẍi = − ∂V
∂xi

, (10)

where ẋi, as usual, denotes time derivative. For this particle, the overall energy

E =
1

2
·m ·

3∑
i=1

(ẋi)
2 + V (x) (11)

is conserved: when the kinetic energy
1

2
·m ·

3∑
i=1

(ẋi)
2 decreases, the potential

energy V (x) increases appropriately, and vice versa.

When energy is not conserved: physical meaning. A classical example
of a physical system for which energy is not conserved is a system with friction.
Its simplest case is when we do not even have any potential field, i.e., when
the dynamical equations have the form

m · ẍi = −k · ẋi, (12)

for some friction coefficient k. This equation can be further simplified into

ẍi = −k0 · ẋi, (13)

for k0
def
=

k

m
. A system that follows this equation slows down, its velocity (and

hence, its kinetic energy) exponentially decreases with time – without being
transferred into any other type of energy.

From the physical viewpoint, this non-conservation of energy means that
the system described by the equation (13) is not closed: the energy lost in
this system is captured by other objects. For friction, it is very clear where
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this energy goes: it gets transformed into the thermal energy, i.e., into kinetic
energy of individual molecules in the surrounding medium.

Need to go beyond simple examples. For simple particles, energy is easy
to define and easy to analyze. However, for more complex physical systems,
especially when fields are involved, it is not easy to find an appropriate ex-
pression for energy.

A general Lagrangian approach to energy conservation. Newton’s
physics was originally formulated in terms of differential equations. It turns
out that most physical theories can be equivalently described in terms of the
minimal action principle: the actual dynamics of particles and fields is the one
that minimizes a special physical quantity called action S. For particles, action
has the form S =

∫
L(x(t), ẋ(t)) dt, where the function L(x(t), ẋ(t)) is known

as the Lagrangian. For example, for the Newtonian particle in a potential field
V (x), the Lagrangian has the form

L =
1

2
·m ·

3∑
i=1

(ẋi)
2 − V (x). (14)

For fields f(x), . . . , the action S has a similar form

S =

∫
L(f(x), . . . , f,i(x), . . .) dx,

where f,i denotes the corresponding partial derivative f,i
def
=

∂f

∂xi
.

The Lagrange formulation of physical theories is currently ubiquitous. One
of the main reasons for this ubiquity is that, according to modern physics, the
correct picture of the physical world comes from quantum mechanics. It is not
easy to find a quantum analogue of a physical theory based on its system of
differential equations, but when a physical theory is given in Lagrangian terms,
its quantization is much more straightforward: in the Feynman’s integration-
over-trajectories formulation, the amplitude ψA,B of a transition from a state
A to the state B is proportional to the “sum” (integral) of the expression

exp

(
i · S
h̄

)
over all trajectories leading from A to B, and the probability to

observe the transition into different states B is proportional to the squared
absolute value of this amplitude |ψA,B |2; see, e.g., [5,16].

Once we know the Lagrangian, we can use Euler-Lagrange equations to
derive the corresponding differential equations. For particles, these equations
take the form

∂L

∂xi
− d

dt

(
∂L

∂ẋi

)
= 0. (15)

One can easily check that for the Newtonian Lagrangian (14), we get exactly
Newton’s equations (10). For fields, the equations take the form

∂L

∂f
−
∑
i

∂

∂xi

(
∂L

∂f,i

)
= 0. (16)
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In the Lagrange approach, the energy of a particle is formally defined as

EL
def
=
∑
i

ẋi ·
∂L

∂ẋi
− L. (17)

One can check that for the Newtonian Lagrangian (14), we get the standard
expression (11) for energy. A similar expression defines energy for a field theory
[5,16]:

EL =
∑
f

∑
i

f,i ·
∂L

∂f,i
− L. (18)

What we do in this section. The Lagrangian approach has been very suc-
cessful in describing physical energy of different particle and field systems.
What we show, however, is that in some simple cases, the Lagrangian formal-
ism does not adequately convey the physical meaning of energy conservation.

4.2 A Simple Example When the Physical Meaning of Energy Conservation
Differs from the Lagrangian-Based Energy

Description of the simple example. Let us consider the simplest possible
example of a physical system in which, from the physical viewpoint, energy
is not conserved: a 1-D particle with friction, whose dynamics is described by
the equation

ẍ(t) = −k0 · ẋ(t). (19)

What we will do. In this subsection, we will show that this system can be
described by a Lagrangian and thus, for this system, energy (as defined in the
Lagrangian formalism) is well conserved. This will show that – at least on this
example – the Lagrangian formalism does not adequately convey the physical
meaning of energy conservation.

In the next section, we show that this inadequacy is not a freaky property
of this particular simple system: a generic dynamical system describing a 1-D
particle can be described by an appropriate Lagrangian.

Towards finding an appropriate Lagrangian. The classical Newtonian
Lagrangian (14) is a sum of two terms: a term depending only on ẋi and
a term depending only on xi. Let us look for a similar type Lagrangian for
describing the equation (19), i.e., let us look for a Lagrangian of the type

L = a(ẋ) + b(x), (20)

for some functions a(ẋ) and b(x). For this Lagrangian, Euler-Lagrange equa-
tions (15) lead to

b′(x)− d

dt
a′(ẋ) = 0, (21)
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where b′(x) and a′(ẋ), as usual, indicated derivatives of the corresponding
functions. By applying the chain rule to the formula (21), we get

b′(x)− a′′(ẋ) · ẍ = 0. (22)

We want to find a Lagrangian that leads to differential equation (19). For this
Lagrangian, the formula (22) will be true when we substitute the expression
(19) for the acceleration ẍ. As a result, we get the following formula

b′(x) + k0 · a′′(ẋ) · ẋ = 0, (23)

i.e., equivalently,
k0 · a′′(ẋ) · ẋ = −b′(x) (24)

for all possible values x and ẋ.
The left-hand side of the formula (24) does not depend on ẋ, and its right-

hand side does not depend on x. Since these two sides are equal, this means
that this expression cannot depend neither on x nor on ẋ and is, therefore, a
constant. Let us denote this constant by C. Then, from the condition that the
right-hand side is equal to this constant, we conclude that b′(x) = −C, hence
b(x) = −C · x + C0. The constant term C0 in the Lagrangian does not affect
the corresponding equations (15) and can thus be safely ignored. So, we have
b(x) = −C · x.

Similarly, from the condition that the left-hand side of the formula (24) is
equal to the constant C, we conclude that

k0 · a′′(y) · y = C, (25)

where, for simplicity, we denoted y
def
= ẋ. From (25), we conclude that

a′′(y) =
C

k0 · y
. (26)

Integrating over y, we get

a′(y) =
C

k0
· ln(y) + C0, (27)

and, integrating once again, that

a(y) =
C

k0
· y · ln(y) + C0 · y + C1. (28)

Ignoring the constant C1 and taking into account that L(x, ẋ) = a(ẋ)+b(x) and
that b(x) = −C ·x, we get the following expression for the desired Lagrangian:

Resulting Lagrangian. The system (19) can be described by the Lagrangian

L(x, ẋ) =
C

k0
· ẋ · ln(ẋ) + C0 · ·x− C · x. (29)
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Comment. One can easily check that for this Lagrangian, Euler-Lagrange equa-
tions (15) indeed lead to the equations (19).

Resulting expression for conserved “energy”. Here,

∂L

∂ẋ
=
C

k0
· (ln(ẋ) + 1) + C0.

Thus, applying the usual formula (17) to the Lagrangian (29), we get the
expression

EL = ẋ · ∂L
∂ẋ
− L =

C

k0
· ẋ+ C · x. (30)

One can easily check that this “energy” is indeed conserved. Indeed, here

dEL

dt
=

d

dt

(
C

k0
· ẋ+ C · x

)
=
C

k0
· ẍ+ C · ·x. (31)

Substituting the expression ẍ = −k0 · ẋ into this formula, we indeed get

dEL

dt
= 0.

4.3 From the Simplest Example to a General Dynamical System

What we do in this subsection. One may think that the weird conclusion
– that for a friction particle, energy is well-defined and conserved – is caused
by the fact that we have selected a very simple dynamical system (10). Alas,
this is not the case. Let us show that a similar Lagrangian reformulation is
possible for a generic dynamical system

ẍi = fi(x1, . . . , xn, ẋ1, . . . , ẋn), i = 1, . . . , n. (32)

A simple multi-D case. Let us start with a multi-D analog of a system with
friction, in which the differential equations have the form

ẍi(t) = −k0 · ẋi(t). (33)

This system can be described, e.g., by a Lagrangian

L =
∑
i

1

k0
· ẋi · ln(ẋi)−

∑
i

xi. (34)

General case. In the general case, differential equations (15) take the form

L,xi
− d

dt
L,ẋi

= 0, (35)
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where L,z denotes partial derivative. By using the chain rule to differentiate
the expression L,ẋi(xj , ẋj), we get

L,xi −
∑
j

L,ẋixj · ẋj −
∑
j

L,ẋiẋj · ẍj = 0. (36)

Substituting ẍi = fi into this formula and using notations yi = ẋi, we get

L,xi
−
∑
j

L,yixj
· yj −

∑
j

L,yiẏj
· fj(x1, . . . , xn, y1, . . . , yn) = 0. (37)

Our objective is to define a function L(x1, . . . , xn, y1, . . . , yn) of 2n variables
for which the second-order partial differential equation (37) holds.

Let us show how we can construct such a function. Let us take, e.g.,
L(x1, . . . , xn, 0, . . . , 0) = 0 when all the derivatives yi are equal to 0. Then, we
extend it to the case when y1 6= 0 and y2 = . . . = yn = 0. With respect to y1,
(37) becomes a simple second order equation

∂2L

∂y21
· f1 +

∂2L

∂y1∂ . . .
· . . .+ . . . = 0,

from which one can explicitly obtain such an extension – e.g., by Euler-style
step-by-step integration. Then, we can extend this function along y2, etc. At
the end, we get a function defined for all possible values of xi and yj .

5 Taking Gravity into Account Resolves the Puzzle

In line with the distinction emphasized by the previous section, let us consider
the physical meaning of energy conservation. So far, out of the two main
contributions of 20 century to physics – quantum mechanics and relativity –
we only took into account quantum mechanics. Let us now take into account
relativity as well.

According to Einstein’s General Relativity, the equations for the metric
tensor field gij (that describes gravity, i.e., curved space-time) have the fol-
lowing form (see, e.g., [5,17,23]):

Gij = Tij ,

where Tij is the stress-energy tensor,

Gij
def
= Rij −

1

2
Rgij ,

and Rij and R are special expressions in terms of the components of the metric
tensor and their first and second order derivatives.

In terms of the tensor Tij , energy conservation can be expressed as T ij
,j = 0,

where, as before, a,i means partial derivative with respect to the i-th coordi-
nate, and it is implicitly assumed that we add over repeated indices, i.e., in this
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case, that we actually mean the formula
∑
j

T ij
,j = 0. (It is worth mentioning

that the above simplifying sum-less notation was first introduced by Einstein
himself and is thus known as Einstein’s notations.)

On the other hand, from the definition of the tensor Gij , it follows that

Gij
;j = 0, where, for each object a (scaler or vector or tensor), a;k denotes

covariant derivative, i.e., derivative of the type a;k = a,k + Γa, where Γ is an
expression containing gij and its first derivatives – and which is equal to 0 in
non-curved (Minkowski) space-time. Due to Einstein’s equation, the formula
Gij

;j = 0 implies that T ij
;j = 0, i.e., that T ij

j +ΓT = 0. If in the original theory,

energy is not conserved, i.e., we have T ij
,j 6= 0, this means that we have ΓT 6= 0,

i.e., that Γ 6= 0.
The value Γ = 0 corresponds to non-curved space-time, so Γ 6= 0 means

that the space-time is curved – i.e., that there is a gravitational field. The
larger non-conservation of energy, the larger Γ and thus, the stronger the
corresponding gravitational field. Thus, in the relativistic version of the orig-
inal non-energy-conserving theory, energy does not disappear, it simply gets
transformed into the gravitational energy – just like in Joule’s experiments,
mechanical energy and heat energy got transformed into each other.

So not only Joule’s principle becomes valid again – this principle is strength-
ened. It is no longer a principle that all physical theories should satisfy – it is
a principle that all physical theories do satisfy.
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