
University of Texas at El Paso University of Texas at El Paso

ScholarWorks@UTEP ScholarWorks@UTEP

Departmental Technical Reports (CS) Computer Science

12-2019

Why Spiking Neural Networks Are Efficient: A Theorem Why Spiking Neural Networks Are Efficient: A Theorem

Michael Beer
Leibniz University Hannover, beer@irz.uni-hannover.de

Julio Urenda
The University of Texas at El Paso, jcurenda@utep.edu

Olga Kosheleva
The University of Texas at El Paso, olgak@utep.edu

Vladik Kreinovich
The University of Texas at El Paso, vladik@utep.edu

Follow this and additional works at: https://scholarworks.utep.edu/cs_techrep

 Part of the Computer Sciences Commons

Comments:

Technical Report: UTEP-CS-19-111

Recommended Citation Recommended Citation
Beer, Michael; Urenda, Julio; Kosheleva, Olga; and Kreinovich, Vladik, "Why Spiking Neural Networks Are
Efficient: A Theorem" (2019). Departmental Technical Reports (CS). 1389.
https://scholarworks.utep.edu/cs_techrep/1389

This Article is brought to you for free and open access by the Computer Science at ScholarWorks@UTEP. It has
been accepted for inclusion in Departmental Technical Reports (CS) by an authorized administrator of
ScholarWorks@UTEP. For more information, please contact lweber@utep.edu.

https://scholarworks.utep.edu/
https://scholarworks.utep.edu/cs_techrep
https://scholarworks.utep.edu/computer
https://scholarworks.utep.edu/cs_techrep?utm_source=scholarworks.utep.edu%2Fcs_techrep%2F1389&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/142?utm_source=scholarworks.utep.edu%2Fcs_techrep%2F1389&utm_medium=PDF&utm_campaign=PDFCoverPages
https://scholarworks.utep.edu/cs_techrep/1389?utm_source=scholarworks.utep.edu%2Fcs_techrep%2F1389&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:lweber@utep.edu

Why Spiking Neural Networks Are Efficient:

A Theorem

Michael Beer1, Julio Urenda2,3,
Olga Kosheleva4, and Vladik Kreinovich3

1Institute for Risk and Reliability
Leibniz University Hannover
30167 Hannover, Germany
beer@irz.uni-hannover.de

2Department of Mathematical Sciences
3Department of Computer Science
4Department of Teacher Education
University of Texas at El Paso

500 W. University
El Paso, TX 79968, USA

jcurenda@utep.edu, olgak@utep.edu, vladik@utep.edu

Abstract

Current artificial neural networks are very successful in many machine
learning applications, but in some cases they still lag behind human abil-
ities. To improve their performance, a natural idea is to simulate features
of biological neurons which are not yet implemented in machine learning.
One of such features is the fact that in biological neural networks, signals
are represented by a train of spikes. Researchers have tried adding this
spikiness to machine learning and indeed got very good results, especially
when processing time series (and, more generally, spatio-temporal data).
In this paper, we provide a theoretical explanation for this empirical suc-
cess.

1 Formulation of the Problem

Why spiking neural networks: a historical reason. At this moment,
artificial neural networks are the most successful – and the most promising –
direction in Artificial Intelligence; see, e.g., [3].

Artificial neural networks are largely patterned after the way the actual bi-
ological neural networks work; see, e.g., [2, 3]. This patterning makes perfect
sense: after all, our brains are the result of billions of years of improving evo-
lution, so it is reasonable to conclude that many features of biological neural

1

networks are close to optimal – not very efficient features would have been
filtered out in this long evolutionary process.

However, there is an important difference between the current artificial neu-
ral networks and the biological neural networks:

• when some processing of the artificial neural networks is implemented in
hardware – by using electronic or optical transformation – each numerical
value is represented by the intensity (amplitude) of the corresponding
signal;

• in contrast, in the biological neural networks, each value – e.g., the inten-
sity of the sound or of the light – is represented by a series of instantaneous
spikes, so that the original value is proportional to the frequency of these
spikes.

Since simulating many other features of biological neural networks has led
to many successes, a natural idea is to also try to emulate the spiking character
of the biological neural networks.

Spiking neural networks are indeed efficient. Interestingly, adding spiking
to artificial neural networks has indeed led to many successful applications,
especially in processing temporal (and even spatio-temporal) signals; see, e.g.,
[4] and references therein.

But why? A biological explanation of the success of spiking neural networks
– based on the above evolution arguments – makes perfect sense, but it would
be nice to supplement it with a clear mathematical explanation – especially
since, in spite of all the billions years of evolution, we humans are not perfect as
biological beings, we need medicines, surgeries, and other artificial techniques
to survive, and our brains often make mistakes.

What we do in this paper. In this paper, we consider the question of signal
representation from the mathematical viewpoint, and we show that the spiking
representation is indeed optimal in some reasonable sense.

2 Analysis of the Problem and the First Result

Looking for basic functions. In general, to represent a signal x(t) means to
approximate it as a linear combination of some basic functions. For example, it
is reasonable to represent a periodic signal as a linear combination of sines and
cosines. In more general cases – e.g., when analyzing weather – it makes sense
to represent the observed values as a linear combination of functions t, t2, etc.,
representing the trend and sines and cosines that describe the periodic part of
the signal. To get a more accurate presentation, we need to take into account
that the amplitudes of the periodic components can also change with time, so
we end up with terms of the type t · sin(ω · t).

If we analyze how radioactivity of a sample changes with time, a reason-
able idea is to describe the measured values x(t) as a linear combination of

2

exponentially decaying functions exp(−k · t) representing the decay of different
isotopes, etc.

So, in precise terms, selecting a representation means selecting an appro-
priate family of basic functions. In general, we may have several parameters
c1, . . . , cn characterizing functions from each family. Sometimes, there is only
one parameter, as in sines and cosines. In other cases, we can have several
parameters – e.g., in control applications, it makes sense to consider decaying
periodic signals of the type exp(−k · t) · sin(ω · t), with two parameters k and
ω. In general, elements b(t) of each such family can be described by a formula
b(t) = B(c1, . . . , cn, t) corresponding to different tuples c = (c1, . . . , cn).

Dependence on parameters must be continuous in some reasonable
sense. We want the dependence B(c1, . . . , cn, t) to be computable, and it is
known that all computable functions are, in some reasonable sense, continuous;
see, e.g., [7].

Indeed, in real life, we can only determine the values of all physical quanti-
ties ci with some accuracy: measurements are always not 100% accurate, and
computations always involve some rounding. For any given accuracy, we can
provide the value with this accuracy – but it will practically never be the exact
value. Thus, the approximate values of ci are the only thing that our computing
algorithm can use when computing the value B(c1, . . . , cn, t). This algorithm
can ask for more and more accurate values of ci, but at some point it must
produce the result. At this point, we only known approximate values of ci, i.e.,
we only know the interval of possible values of ci. And for all the values of ci
from this interval, the result of the algorithm provides, with the given accuracy,
the approximation to the desired value B(c1, . . . , cn, t). This is exactly what
continuity is about!

One has to be careful here, since the real-life processes may actually be, for
all practical purposes, discontinuous. Sudden collapses, explosions, fractures do
happen.

For example, we want to make sure that a step-function which is equal to 0
for t < 0 and to 1 for t ≥ 0 is close to an “almost” step function which is equal
to 0 for t < 0, to 1 for t ≥ ε (for some small ε) and to t/ε for t ∈ (0, ε).

In such situations, we cannot exactly describe the value at moment t – since
the moment t is also measured approximately, but what we can describe is its
values at a moment close to t. In other words, we can say that the two functions
a1(t) and a2(t) are ε-close if:

• for every moment t1, there exists moments t21 and t22 which are ε-close to
t1 (i.e., for which |t2i− t1| ≤ ε) and for which a1(t1) is ε-close to a convex
combination of values a2(t2i), and

• for every moment t2, there exists moments t11 and t12 which are ε-close to
t2 and for which a2(t2) is ε-close to a convex combination of values a1(t1i).

Additional requirement. Since we consider linear combinations of basic func-
tions, it does not make sense to have two basic functions that differ only by a

3

constant: if b2(t) = C · b1(t), then there is no need to consider the function b2(t)
at all; in each linear combination we can replace b2(t) with C · b1(t).

We would like to have the simplest possible family of basic functions.
How many parameters ci do we need? The fewer parameters, the easier it
is to adjust the values of these parameters, and the smaller the probability
of overfitting – a known problem of machine learning in particular and of data
analysis in general, when we fit the formula to the observed data and its random
fluctuations too well and this make it much less useful in other cases where
random fluctuations will be different.

We cannot have a family with no parameters at all – that would mean,
in effect, that we have only one basic function b(t) and we approximate every
signal by an expression C · b(t) obtained by its scaling. This will be a very lousy
approximation to real-life processes – since these processes are all different, they
do not resemble each other at all.

So, we need at least one parameter. Since we are looking for the simplest
possible family, we should therefore consider families depending on a single
parameter c1, i.e., families consisting of functions b(t) = B(c1, t) corresponding
to different values of the parameter c1.

Most observed processes are limited in time. From our viewpoint, we
may view astronomical processes are going on forever – although, in reality, even
they are limited by billions of years. However, in general, the vast majority of
processes that we observe and that we want to predict are limited in time: a
thunderstorm stops, a hurricane end, after-shocks of an earthquake stop, etc.

From this viewpoint, to get a reasonable description of such processes, it
is desirable to have basic functions which are also limited in time, i.e., which
are equal to 0 outside some finite time interval. This need for finite duration
is one of the main reasons in many practical problems, a decomposition into
wavelets performs much better that a more traditional Fourier expansion into
linear combinations of sines and cosines; see, e.g., [1] and references therein.

Shift- and scale-invariance. Processes can start at any moment of time.
Suppose that we have a process starting at moment 0 which is described by a
function x(t). What if we start the same process t0 moments earlier? At each
moment t, the new process has been happening for the time period t+ t0. Thus,
at the moment t, the new process is at the same stage as the original process will
be at the future moment t+ t0. So, the value x′(t) of a quantity characterizing
the new process is equal to the value x(t + t0) of the original process at the
future moment of time t+ t0.

There is no special starting point, so it is reasonable to require that the class
of basic function not change if we simply change the starting point. In other
words, we require that for every t0, the shifted family {B(c1, t+ t0)}c1 coincides
with the original family {B(c1, t)}c1 .

Similarly, processes can have different speed. Some processes are slow, some
are faster. If a process starting at 0 is described by a function x(t), then a λ
times faster process is characterized by the function x′(t) = x(λ · t). There is no

4

special speed, so it is reasonable to require that the class of basic function not
change if we simply change the process’s speed. In other words, we require that
for every λ > 0, the “scaled” family {B(c1, λ · t}c1 coincides with the original
family {B(c1, t)}c1 .

Now, we are ready for the formal definitions.

Definition 1. We say that a function b(t) is limited in time if it equal to 0
outside some interval.

Definition 2. We say that a function b(t) is a spike if it is different from 0
only for a single value t. This non-zero value is called the height of the spike.

Definition 3. Let ε > 0 be a real number. We say that the numbers a1 and a2
are ε-close if |a1 − a2| ≤ ε.

Definition 4. We say that the functions a1(t) and a2(t) are ε-close if:

• for every moment t1, there exists moments t21 and t22 which are ε-close
to t1 (i.e., for which |t2i − t1| ≤ ε) and for which a1(t1) is ε-close to a
convex combination of values a2(t2i), and

• for every moment t2, there exists moments t11 and t12 which are ε-close to
t2 and for which a2(t2) is ε-close to a convex combination of values a1(t1i).

Comment. One can check that this definition is equivalent to the inequality
dH(A1, A2) ≤ ε bounding the Hausdorff distance dH(A1, A2) between the two
sets Ai each of which is obtained from the closure Ci of the graphs of the corre-
sponding function ai(t) by adding the whole vertical interval t× [a, b] for every
two points (t, a) and (t, b) with the same first coordinate from the closure Ci.

Definition 5. We say that a mapping B(c1, t) that assigns, to each real number
c1, a function b(t) = B(c1, t) is continuous if, for every value c1 and for every
ε > 0, there exists a real number δ > 0 such that, if c′1 is δ-close to c1, then the
function b(t) = B(c1, t) is ε-close to the function b′(t) = B(c′1, t).

Definition 6. By a family of basic functions, we mean a continuous mapping
for which:

• for each c1, the function b(t) = B(c1, t) is limited in time, and

• if c1 and c′1 are two different numbers, then the functions b(t) = B(c1, t)
and b′(t) = B(c′1, t) cannot be obtained from each other by multiplication
by a constant.

Definition 7. We say that a family of basic functions B(c1, t) is shift-invariant
if for each t0, the following two classes of functions of one variable coincide:

{B(c1, t)}c1 = {B(c1, t+ t0)}c1 .

5

Definition 8. We say that a family of basic functions B(c1, t) is scale-invariant
if for each λ > 0, the following two classes of functions of one variable coincide:

{B(c1, t)}c1 = {B(c1, λ · t)}c1 .

Proposition 1. If a family of basic functions B(c1, t) is shift- and scale-
invariant, then for every c1, the corresponding function b(t) = B(c1, t) is a
spike, and all these spikes have the same height.

Discussion. This result explains the efficiency of spikes: namely, a family of
spikes is the only one which satisfies the reasonable conditions of shift- and scale-
invariance, i.e., the only family that does not change if we change the starting
point of the process and/or change the process’s speed.

Proof. Let us assume that the family of basic functions B(c1, t) is shift- and
scale-invariant. Let us prove that all the functions b(t) = B(c1, t) are spikes.

1◦. First, we prove that none of the functions B(c1, t) is identically 0.
Indeed, the zero function can be contained from any other function by mul-

tiplying that other function by 0 – and this would violate the second part of
Definition 6 (of a family of basic functions).

2◦. Let us prove that each function from the given family is a spike.
Indeed, each of the functions b(t) = B(c1, t) is not identically zero, i.e., it

attains non-zero values for some t. By the Definition 6 of a family of basic
functions, each of these functions is limited in time, i.e., the values t for which
the function b(t) is non-zero are bounded by some interval. Thus, the values

t−
def
= inf{t : b(t) 6= 0} and t+

def
= sup{t : b(t) 6= 0} are finite, with t− ≤ t+.

Let us prove that we cannot have t− < t+. Indeed, in this case, the in-
terval [t−, t+] is non-degenerate. Thus, by an appropriate combination of shift
and scaling, we will be able to get this interval from any other non-degenerate
interval [a, b], with a < b: indeed, it is sufficient to take the transformation

t → λ · t+ t0, where λ =
t+ − t−
b− a

and t0 = λ · a− t−. For each of these trans-

formations, due to shift- and scale-invariance of the family, the correspondingly
re-scaled function b′(t) = b(λ · t + t0) also belongs to the family B(c1, t), and
for this function, the corresponding values t′− and t′+ will coincide with a and
b. All these functions are different – so, we will have a 2-dimensional family of
functions (i.e., a family depending on 2 parameters), which contradicts to our
assumption that the family B(c1, t) is one-dimensional.

The fact that we cannot have t− < t+ means that we should have t− = t+,
i.e., that every function b(t) from our family is indeed a spike.

3◦. To complete the proof, we need to prove that all the spikes that form the
family B(c1, t) have the same height.

Let us describe this property in precise terms. Let b1(t) and b2(t) be any
two functions from the family. According to Part 2 of this proof, both functions
are spikes, so:

6

• the value b1(t) is only different from 0 for some value t1; let us denote the
corresponding height b1(t1) by h1;

• similarly, the value b2(t) is only different from 0 for some value t2; let us
denote the corresponding height b2(t2) by h2.

We want to prove that h1 = h2.
Indeed, since the function b1(t) belongs to the family, and the family is

shift-invariant, then for t0
def
= t1− t2, the shifted function b′1(t)

def
= b1(t+ t0) also

belongs to this family. The shifted function is non-zero when t + t0 = t1, i.e.,
when t = t1 − t0 = t2, and it has the same height h1.

If h1 6= h2, this would contradict to the second part of Definition 6 (of the
family of basic functions) – because then we would have two functions b′1(t) and
b2(t) in this family, which can be obtained from each other by multiplying by a
constant. Thus, the heights must be the same.

The proposition is proven.

3 Main Result: Spikes Are, In Some Reasonable
Sense, Optimal

It is desirable to check whether spiked neurons are optimal. In the
previous section, we showed that spikes naturally appear if we require reasonable
properties like shift- and scale-invariance. This provides some justification for
the spiked neural networks.

However, the ultimate goal of neural networks is to solve practical problems.
From this viewpoint, we need to take into account that a practitioner is not
interested in invariance or other mathematical properties, a practitioner wants
to optimize some objective function. So, from the practitioner’s viewpoint, the
main question is: are spiked neurons optimal?

Different practitioners have different optimality criteria. The problem
is that, in general, different practitioners may have different optimality criteria.
In principle, we can pick one such criterion (or two or three) and analyze which
families of basic functions are optimal with respect to these particular criterion
– but this will not be very convincing to a practitioner who has a different
optimality criterion.

An ideal explanation should work for all reasonable optimality criteria. This
is what we aim at in this section. To achieve this goal, let us analyze what we
mean by an optimality criterion, and which optimality criteria can be considered
reasonable. In this analysis, we will follow a general analysis of computing-
related optimization problems performed in [5].

What is an optimality criterion: analysis. At first glance, the answer to
this question may sound straightforward: we have an objective function J(a)
that assigns, to each alternative a, a numerical value J(a), and we want to select

7

an alternative for which the value of this function is the largest possible (or, if
we are interested in minimizing losses, the smallest possible).

This formulation indeed describes many optimality criteria, but not all of
them. Indeed, assume, for example, we are looking for the best method a for
approximating functions from a given class. A natural criterion may be to
minimize the mean squared approximation error J(a) of the method a. If there
is only one method with the smallest possible mean squared error, then this
method is selected. But what if there are several different methods with the
same mean squared error – and this is often the case. In this case, we can
use this non-uniqueness to optimize something else: e.g., select, out of several
methods with the same mean squared error, the method for which the average
computation time T (a) is the smallest.

In this situation, the optimality criterion cannot be described by single ob-
jective function, it takes a more complex form. Namely, we say that a method
a′ is better than a method a if:

• either J(a) < J(a′),

• or J(a) = J(a′) and T (a) < T (a′).

This additional criterion may still leave us with several equally good methods.
We can use this non-uniqueness to optimize yet another criterion: e.., worst-case
computation time, etc.

The only thing which is needed to describe an optimality criterion is that
this criterion must enable us to compare the quality of different alternatives. In
mathematical terms, this criterion must enable us to decide which alternatives
are better (or of the same quality); let us denote this by a ≤ a′. Clearly, if a′ is
better than a (i.e., a ≤ a′) and a′′ is better than a′ (a′ ≤ a′′), then a′′ is better
than a (a ≤ a′′), so the relation ≤ must be transitive. Such relations are known
as pre-orders.

Comment. Not all such relations are orders: that would require an additional
property that if a ≤ b and b ≤ a, then a = b, and, as we have mentioned earlier,
this is not necessarily true.

An optimality criterion must be final. In terms of the relation ≤, optimal
means better than (or of the same quality as) all other alternatives: a ≤ aopt
for all a.

As we have mentioned earlier, if we have several different optimal alterna-
tives, then we can use this non-uniqueness to optimize something else – i.e., in
effect, to modify the corresponding optimality criterion. Thus, when the op-
timality criterion allows several different optimal alternatives, this means that
this criterion is not final, it has to be modified. For a final criterion, we should
have only one optimal alternative.

An optimality criterion must be invariant. In real life, we deal with real-
life processes x(t), in which values of different quantities change with time t.
The corresponding numerical values of time t depend on the starting point that

8

we use for measuring time and on the measuring unit: e.g., 1 hour is equivalent
to 60 seconds; numerical values are different, but from the physical viewpoint,
this is the same time interval.

We are interested in a universal technique for processing data. It is therefore
reasonable to require that the relative quality of different techniques should not
change if we simply change the starting point for measuring time or a measuring
unit.

Let us describe all this in precise terms.

Definition 9. Let a set A be given; its elements will be called alternatives.

• By an optimality criterion ≤ on the set A, we mean a transitive relation
(i.e., a pre-order) on this set.

• An element aopt is called optimal with respect to the criterion ≤ is for all
a ∈ A, we have a ≤ aopt.

• An optimality criterion is called final if, with respect to this criterion, there
exists exactly one optimal alternative.

Definition 10. For each family of basic functions B(c1, t) and for each value
t0, by its shift Tt0(B), we mean a family that assigns, to each number c1, a
function B(c1, t+ t0).

Definition 11. We say that an optimality criterion on the class of all families
of basic functions is shift-invariant if for every two families B and B′ and for
each t0, B ≤ B′ implies that Tt0(B) ≤ Tt0(B′).

Definition 12. For each family of basic functions B(c1, t) and for each value
λ > 0, by its scaling Sλ(B), we mean a family that assigns, to each number c1,
a function B(c1, λ · t).

Definition 13. We say that an optimality criterion on the class of all families
of basic functions is scale-invariant if for every two families B and B′ and for
each λ > 0, B ≤ B′ implies that Sλ(B) ≤ Sλ(B′).

Now, we are ready to formulate our main result.

Proposition 2. For every final shift- and scale-invariant optimality criterion
on the class of all families of basic functions, all elements of the optimal family
are spikes of the same height.

Proof. Let us prove that the optimal family Bopt is itself shift- and scale-
invariant; then this result will follow from Proposition 1.

Indeed, let us consider any transformation T – be it shift or scaling. By
definition of optimality, Bopt is better than (or is of the same quality) as any
other family B: B ≤ Bopt. In particular, for every B, this is true for the
family T−1(B), i.e., T−1(B) ≤ Bopt, where, as usual, T−1 denotes the inverse
transformation.

Due to invariance of the optimality criterion, T−1(B) ≤ Bopt implies that
T (T−1(B)) ≤ T (Bopt), i.e., that B ≤ T (Bopt). This is true for each family B,

9

thus the family T (Bopt) is optimal. However, we assumed that our optimality
criterion is final, which means that there is only one optimal family. Thus,
we have T (Bopt) = Bopt, i.e., the optimal family Bopt is indeed invariant with
respect to any of the shifts and scalings. Now, by applying Proposition 1, we
conclude the proof of this proposition.

Acknowledgments

This work was supported in part by the US National Science Foundation grants
1623190 (A Model of Change for Preparing a New Generation for Professional
Practice in Computer Science) and HRD-1242122 (Cyber-ShARE Center of Ex-
cellence).

The authors are greatly thankful to Nikola Kasabov and to all the par-
ticipants of the 2019 IEEE Series of Symposia on Computational Intelligence
(Xiamen, China, December 4–6, 2019) for valuable discussions.

References

[1] P. S. Addison, The Illustrated Wavelet Transform Handbook: Introductory
Theory and Applications in Science, Engineering, Medicine and Finance,
CRC Press, Boca Raton, Florida, 2016.

[2] C. M. Bishop, Pattern Recognition and Machine Learning, Springer, New
York, 2006.

[3] I. Goodfellow, Y. Bengio, and A. Courville, Deep Leaning, MIT Press, Cam-
bridge, Massachusetts, 2016.

[4] N. K. Kasabov (ed.). Time-Space, Spiking Neural Networks and Brain-
Inspired Artificial Intelligence, Springer Verlag, Cham, Switzerland, 2019.

[5] H. T. Nguyen and V. Kreinovich, Applications of Continuous Mathematics
to Computer Science, Kluwer, Dordrecht, 1997.

[6] S. K. Reed, Cognition: Theories and Application, Wadsworth Cengage
Learning, Belmont, California, 2010.

[7] K. Weihrauch, Computable Analysis: An Introduction, Springer-Verlag,
Berlin, Heidelberg, New York, 2000.

10

	Why Spiking Neural Networks Are Efficient: A Theorem
	Recommended Citation

	tmp.1578936674.pdf.JOvwo

