
University of Texas at El Paso University of Texas at El Paso 

ScholarWorks@UTEP ScholarWorks@UTEP 

Departmental Technical Reports (CS) Computer Science 

12-2019 

Fuzzy Logic Explains the Usual Choice of Logical Operations in Fuzzy Logic Explains the Usual Choice of Logical Operations in 

2-Valued Logic 2-Valued Logic 

Julio Urenda 
The University of Texas at El Paso, jcurenda@utep.edu 

Olga Kosheleva 
The University of Texas at El Paso, olgak@utep.edu 

Vladik Kreinovich 
The University of Texas at El Paso, vladik@utep.edu 

Follow this and additional works at: https://scholarworks.utep.edu/cs_techrep 

 Part of the Computer Sciences Commons 

Comments: 

Technical Report: UTEP-CS-19-110 

Recommended Citation Recommended Citation 
Urenda, Julio; Kosheleva, Olga; and Kreinovich, Vladik, "Fuzzy Logic Explains the Usual Choice of Logical 
Operations in 2-Valued Logic" (2019). Departmental Technical Reports (CS). 1390. 
https://scholarworks.utep.edu/cs_techrep/1390 

This Article is brought to you for free and open access by the Computer Science at ScholarWorks@UTEP. It has 
been accepted for inclusion in Departmental Technical Reports (CS) by an authorized administrator of 
ScholarWorks@UTEP. For more information, please contact lweber@utep.edu. 

https://scholarworks.utep.edu/
https://scholarworks.utep.edu/cs_techrep
https://scholarworks.utep.edu/computer
https://scholarworks.utep.edu/cs_techrep?utm_source=scholarworks.utep.edu%2Fcs_techrep%2F1390&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/142?utm_source=scholarworks.utep.edu%2Fcs_techrep%2F1390&utm_medium=PDF&utm_campaign=PDFCoverPages
https://scholarworks.utep.edu/cs_techrep/1390?utm_source=scholarworks.utep.edu%2Fcs_techrep%2F1390&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:lweber@utep.edu


Fuzzy Logic Explains the Usual Choice of Logical

Operations in 2-Valued Logic

Julio Urenda1,2, Olga Kosheleva3, and Vladik Kreinovich2

1Department of Mathematical Sciences
2Department of Computer Science
3Department of Teacher Education
University of Texas at El Paso

500 W. University
El Paso, TX 79968, USA

jcurenda@utep.edu, olgak@utep.edu, vladik@utep.edu

Abstract

In the usual 2-valued logic, from the purely mathematical viewpoint,
there are many possible binary operations. However, in commonsense
reasoning, we only use a few of them: why? In this paper, we show that
fuzzy logic can explain the usual choice of logical operations in 2-valued
logic.

1 Formulation of the Problem

In 2-valued logic, there are many possible logical operations: re-
minder. In the usual 2-valued logic, in which each variable can have two
possible truth values – 0 (false) or 1 (true), for each n, there are many possi-
ble nlogical operations, i.e., functions f : {0, 1}n → {0, 1}. To describe each
such function, we need to describe, for each of 2n boolean vectors (a1, . . . , an),
whether the resulting value f(a1, . . . , an) is 0 or 1.

Case of unary operations. For unary operations, i.e., operations correspond-
ing to n = 1, we need to describe two values: f(0) and f(1). For each of these
two values, there are 2 possible options, so overall, we have 2 · 2 = 22 = 4
possible unary operations:

• the case when f(0) = f(1) = 0 corresponds to a constant f(a) ≡ 0;

• the case when f(0) = 0 and f(1) = 1 corresponds to the identity function

f(a) = a;

• the case when f(0) = 1 and f(1) = 0 corresponds to negation f(a) = ¬a;
and

1



• the case when f(0) = f(1) = 1 corresponds to a constant function

f(a) = 1.

The only non-trivial case is negation, and it is indeed actively used in our logical
reasoning.

Case of binary operations. For binary operations, i.e., operations corre-
sponding to n = 2, we need to describe four values f(0, 0), f(0, 1), f(1, 0), and
f(1, 1). For each of these four values, there are 2 possible options, so overall,
we have 24 = 16 possible binary operations:

• the case when f(0, 0) = f(0, 1) = f(1, 0) = f(1, 1) = 0 corresponds to a
constant function f(a, b) ≡ 0;

• the case when f(0, 0) = f(0, 1) = f(1, 0) = 0 and f(1, 1) = 1 corresponds
to “and” f(a, b) = a& b;

• the case when f(0, 0) = f(0, 1) = 0, f(1, 0) = 1, and f(1, 1) = 0, corre-
sponds to f(a, b) = a&¬b;

• the case when f(0, 0) = f(0, 1) = 0 and f(1, 0) = f(1, 1) = 1, corresponds
to f(a, b) = a;

• the case when f(0, 0) = 0, f(0, 1) = 1, and f(1, 0) = f(1, 1) = 0, corre-
sponds to f(a, b) = ¬a& b;

• the case when f(0, 0) = 0, f(0, 1) = 1, f(1, 0) = 0, and f(1, 1) = 1,
corresponds to f(a, b) = b;

• the case when f(0, 0) = 0, f(0, 1) = 1, f(1, 0) = 1, and f(1, 1) = 0,
corresponds to exclusive “or” (= addition modulo 2) f(a, b) = a⊕ b;

• the case when f(0, 0) = 0 and f(0, 1) = f(1, 0) = f(1, 1) = 1, corresponds
to “or” f(a, b) = a ∨ b;

• the case when f(0, 0) = 1 and f(0, 1) = f(1, 0) = f(1, 1) = 0, corresponds
to f(a, b) = ¬a&¬b;

• the case when f(0, 0) = 1, f(0, 1) = f(1, 0) = 0, and f(1, 1) = 1, corre-
sponds to equivalence (equality) f(a, b) = a ≡ b;

• the case when f(0, 0) = 1, f(0, 1) = 0, f(1, 0) = 1, and f(1, 1) = 0,
corresponds to f(a, b) = ¬b;

• the case when f(0, 0) = 1, f(0, 1) = 0, and f(1, 0) = f(1, 1) = 1, corre-
sponds to f(a, b) = a ∨ ¬b or, equivalently, to the implication

f(a, b) = b→ a;

2



• the case when f(0, 0) = f(0, 1) = 1, and f(1, 0) = f(1, 1) = 0, corresponds
to f(a, b) = ¬a;

• the case when f(0, 0) = f(0, 1) = 1, f(1, 0) = 0, and f(1, 1) = 1, corre-
sponds to f(a, b) = ¬a ∨ b, or, equivalently, to the implication

f(a, b) = a→ b;

• the case when f(0, 0) = f(0, 1) = f(1, 0) = 1, and f(1, 1) = 0, corresponds
to f(a, b) = ¬a ∨ ¬b;

• the case when f(0, 0) = f(0, 1) = f(1, 0) = f(1, 1) = 1, corresponds to a
constant function f(a, b) ≡ 1.

In commonsense reasoning, we only some of the binary operations.
Out of the above 16 operations,

• two are constants: f(a, b) = 0 and f(a, b) = 1, and

• four are actually unary: f(a, b) = a, f(a, b)¬a, f(a, b) = b, and

f(a, b) = ¬b.

In addition to these 2 + 4 = 6 operations, there are also 10 non-constant and
non-unary binary logical operations:

• six named operations “and”, “or”, exclusive “or”, equivalence, and two
implications (a→ b and b→ a), and

• four usually un-named logical operations

¬a& b, a&¬b, ¬a&¬b, and ¬a ∨ ¬b.

In commonsense reasoning, however, we only use the named operations. Why?

Maybe it is the question of efficiency? Maybe it is the question of effi-
ciency? To check on this, we can use the experience of computer design, where
the constituent binary gates are selected so as to make computations more effi-
cient.

Unfortunately, this leads to a completely different set of binary operations:
e.g., computers typically use “nand” gates, that implement the function f(a, b) =
¬(a& b) = ¬a ∨ ¬b, but they never use gates corresponding to implication. So,
the usual selection of binary logical operations remains a mystery.

What we do in this paper. In this paper, we show that the usual choice of
logical operations in the 2-valued logic can be explained by ... fuzzy logic.

3



2 Our Explanation

Why fuzzy logic. We are interested in operations in 2-valued logics, so why
should we take fuzzy logic into account? The reason is straightforward: in
commonsense reasoning, we deal not only with precisely defined statements,
but also with imprecise (“fuzzy”) ones. For example:

• We can say that the age of a person is 18 or above and and this person is
a US citizen, so he or she is eligible to vote.

• We can also say that a student is good academically and enthusiastic about
research, so this student can be recommended for the graduate school.

We researchers may immediately see the difference between these two uses of
“and”: precisely defined (“crisp”) in the first case, fuzzy in the second case.
However, to many people, these two examples are very similar.

So, to understand why some binary operations are used in commonsense
reasoning and some are not, it is desirable to consider the use of each operation
not only in the 2-valued logic, but also in the more general fuzzy case; see,
e.g., [1, 3, 4, 6, 7, 9].

Which fuzzy generalizations of binary operations should we consider?
In fuzzy logic, in addition to value 1 (true) and 0 (false), we also consider
intermediate values corresponding to uncertainty. To describe such intermediate
degrees, it is reasonable to consider real numbers intermediate between 0 or
1 – this was exactly the original Zadeh’s idea which is still actively used in
applications of fuzzy logic.

So, to compare different binary operations, we need to extend these opera-
tions from the original set {0, 1} to the whole interval [0, 1]. There are many
possible extension of this type; which one should we select?

A natural idea is to select the most robust operations. For each fuzzy
statement, its degree of confidence has to be elicited from the person making
this statement. These statements are fuzzy, so naturally, it is not reasonable
to expect that the same expert will always produce the exact same number:
for the same statement, the expert can one day produce one number, another
day a slightly different number, etc. When we plot these numbers, we will
get something like a bell-shaped histogram – similar to what we get when we
repeatedly measure the same quantity by the same measuring instrument. It is
therefore reasonable to say that, in effect, the value a marked by an expert can
differ from the corresponding mean value a by some small random value ∆a,
with zero mean and small standard deviation σ.

Since this small difference does not affect the user’s perception, it should not
affect the result of commonsense reasoning – in particular, the result of applying
a binary operation to the corresponding imprecise numbers should not change
much if we use slightly different estimates of the same expert. For example, 0.9
and 0.91 probably represent the same degree of expert’s confidence. So, it is

4



not reasonable to expect that we should get drastically different values of a& b
if we use a = 0.9 or a = 0.91.

To be more precise, if we fix the value of one of the variables in a binary
operation, then the effect of changing the second value on the result should
be as small as possible. Due to the probabilistic character, we can only talk
about being small “on average”, i.e., about the smallest possible mean square
difference. This idea was, in effect, presented in [5, 6, 8] for the case of “and”-
and “or”-operations; let us show how it can be extended to all possible binary
logical operations.

For a function F (a) of one variable, if we replace a with a + ∆a, then
the value F (a) changes to F (a + ∆a). Since the difference ∆a is small, we
can expand the above expression in Taylor series and ignore terms which are
quadratic (or higher order) in terms of ∆a. Thus, we keep only linear terms
in this expansion: F (a + ∆a) = F (a) + F ′(a) · ∆a, where F ′(a), as usual,
indicates the derivative. The resulting difference in the value of F (a) is equal to

∆F
def
= F (a+∆a)−F (a) = F ′(a) ·∆a. Here, the mean squared value (variance)

of ∆a is equal to σ2; thus, the mean squared value of F ′(a) ·∆a is equal to

(F ′(a))2 · σ2.

We are interested in the mean value of this difference. Here, a can take
any value from the interval [0, 1], so the resulting mean value takes the form∫ 1

0
(F ′(a))2 ·σ2 da. Since σ is a constant, minimizing this difference is equivalent

to minimizing the integral
∫ 1

0
(F ′(a))2 da.

Our goal is to extend a binary operation from the 2-valued set {0, 1}. So, we
usually know the values of the function F (a) for a = 0 and a = 1. In general,
a function f(x) that minimizes a functional

∫
L(f, f ′) dx is described by the

Euler-Lagrange equation
∂L

∂f
− d

dx

∂L

∂f ′
= 0;

see, e.g., [2]. In our case, L = (F ′(a))2, so the Euler-Lagrange equation has the
form

d

da
(2F ′(a)) = 2F ′′(a) = 0.

Thus, F ′′(a) = 0, meaning that the function F (a) is linear.
Thus, we conclude that in our extensions of binary (and other) operations,

the corresponding function should be linear in each of the variables, i.e., that
this function should be bilinear (or, in general, multi-linear).

Such an extension is unique: a proof. Let us show that this requirement of
bilinearity uniquely determines the corresponding extension. Indeed, suppose
that two bilinear expressions f(a, b) and g(a, b) have the same values when
a ∈ {0, 1} and b ∈ {0, 1}. In this case, the difference d(a, b) = f(a, b)− g(a, b) is
also a bilinear expression whose value for all four pairs (a, b) for which a ∈ {0, 1}
and b ∈ {0, 1} is equal to 0. Since d(0, 0) = d(1, 0) = 0, by linearity, we conclude
that d(a, 0) = 0 for all a. Similarly, since d(0, 1) = d(1, 1) = 0, by linearity, we

5



conclude that d(a, 1) = 0 for all a. Now, since d(a, 0) = d(a, 1) = 0, by linearity,
we conclude that d(a, b) = 0 for all a and b – thus, indeed, f(a, b) = g(a, b) and
the extension is indeed defined uniquely.

How can we find the corresponding bilinear extension. For negation,
linear interpolation leads to the usual formula f(a) = 1− a.

Let us see what happens for binary operations. Once we know the values
f(0, 0) and f(1, 0), we can use linear interpolation to find the values f(a, 0) for
all a:

f(a, 0) = f(0, 0) + a · (f(1, 0)− f(0, 0)).

Similarly, once we know the values f(0, 1) and f(1, 1), we can use linear inter-
polation to find the values f(a, 1) for all a:

f(a, 1) = f(0, 1) + a · (f(1, 1)− f(0, 1)).

Now, since we know, for each a, the values f(a, 0) and f(a, 1), we can use linear
interpolation to find the value f(a, b) for each b as

f(a, b) = f(a, 0) + b · (f(a, 1)− f(a, 0)).

Let us use this idea to find the bilinear extensions of all ten non-trivial binary
operations.

Let us list bilinear extensions of all non-trivial binary operations.

• for a& b, we have f(a, b) = a · b;

• for a&¬b, we have f(a, b) = a · (1− b) = a− a · b;

• for ¬a& b, we have f(a, b) = (1− a) · b = b− a · b;

• for a⊕ b, we have f(a, b) = a+ b− 2a · b;

• for a ∨ b, we have f(a, b) = a+ b− a · b;

• for ¬a&¬b, we have f(a, b) = (1− a) · (1− b);

• for a ≡ b, we have f(a, b) = 1− a− b+ 2a · b;

• for ¬a ∨ b = a→ b, we have f(a, b) = 1− a+ a · b;

• for ¬a ∨ b = b→ a, we have f(a, b) = 1− b+ a · b;

• finally, for ¬a ∨ ¬b = ¬(a& b), we have f(a, b) = 1− a · b.

Which operations should we select as basic. As the basic operations, we
should select the ones which are the easiest to compute. Of course, we should
have negation f(a) = 1 − a, since it is the easiest to compute: it requires only
one subtraction.

Out of all the above ten binary operations, the simplest to compute is
f(a, b) = a · b (corresponding to “and”) which requires only one arithmetic

6



operation – multiplication. All other operations need at least one more arith-
metic operation. This explains why “and” is one of the basic operations in
commonsense reasoning.

Several other operations can be described in terms of the selected “and”-
and “not”-operations f&(a, b) = a · b and f¬(a) = 1− a:

• the operation f(a, b) = a−a ·b corresponding to a&¬b can be represented
as f&(a, f¬(b));

• the operation f(a, b) = b−a ·b corresponding to ¬a& b can be represented
as f&(f¬(a), b);

• the operation f(a, b) = a+b−a·b corresponding to a∨b can be represented
as f¬(f&(f¬(a), f¬(b)));

• the operation f(a, b) = (1 − a) · (1 − b) corresponding to ¬a&¬b can be
represented as f&(f¬(a), f¬(b));

• the operation f(a, b) = 1− a+ a · b corresponding to ¬a ∨ b = a→ b can
be represented as f¬(f&(a, f¬(b)));

• the operation f(a, b) = 1− b+ a · b corresponding to a ∨ ¬b = b→ a can
be represented as f¬(f&(f¬(a), b)); and

• the operation f(a, b) = 1− a · b corresponding to ¬a ∨ ¬b = ¬(a& b) can
be represented as f¬(f&(a, b)).

There are two binary operations which cannot be represented as compositions
of the selected “and” and “or”-operations: namely:

• the operation f(a, b) = a+ b− 2a · b corresponding to exclusive “or” a⊕ b,
and

• the operation f(a, b) = 1−a−b+2a ·b corresponding to equivalence a ≡ b.

Thus, we need to add at least one of these operations to our list of basic oper-
ations. Out of these two operations, the simplest to compute – i.e., requiring
the smallest number of arithmetic operations – is the function corresponding
to exclusive “or”. This explains why we use exclusive “or” in commonsense
reasoning.

What about operations that can be described in terms of “and” and “not”?
For some of these operations, e.g., for the function

f(a, b) = a− a · b = a · (1− b)

corresponding to a&¬b, direct computation requires exactly as many arithmetic
operations as computing the corresponding representation in terms of “and” and
“or”. However, there is one major exception: for the function f(a, b) = a+b−a·b
corresponding to “or”:

7



• its straightforward computation requires two additions/subtractions and
one multiplication, while

• its computation as f¬(f&(f¬(a), f¬(b)) requires one multiplication (when
applying f&) but three subtractions (corresponding to three negation op-
erations).

Thus, for the purpose of efficiency, it makes sense to consider “or” as a separate
operation. This explains why we use “or” in commonsense reasoning.

So far, we have explained all basic operations except for implication. Ex-
plaining implication requires a slightly more subtle analysis.

Why implications. In the above analysis, we considered addition and subtrac-
tion to be equally complex. This is indeed the case for computer-based compu-
tations, but for us humans, subtraction is slightly more complex than addition.
This does not change our conclusion about operations like f(a, b) = a − a · b:
whether we compute them directly or as f(a, b) = f&(a, f¬(b)), in both cases,
we use the same number of multiplications, the same number of additions, and
the same number of subtractions.

There is, however, a difference for implication operations such as

f(a, b) = 1− a+ a · b = f¬(f&(a, f¬(b))) :

• its direct computation requires one multiplication, one addition, and one
subtraction, while

• its computation in terms of “and”- and “not”-operations requires one mul-
tiplication and two subtractions.

In this sense, the direct computation of implication is more efficient – which
explains why we also use implication in commonsense reasoning.

Conclusion. By using fuzzy logic, we have explained why negation, “and”,
“or”, implication, and exclusive “or” are used in commonsense reasoning while
other binary 2-valued logical operations are not.

3 Auxiliary Result: Why the Usual Quantifiers?

Formulation of the problem. In the previous sections, we consider binary
logical operations. In our reasoning, we also use quantifiers such as “for all”
and “there exists” which are, in effect, n-ary logical operations, where n is the
number of possible objects.

Why these quantifiers? Why not use additional quantifiers like “there exists
at least two”? Let us analyze this question from the same fuzzy-based viewpoint
from which we analyzed binary operations. It turns out that this way, we get a
(partial) explanation for the usual choice of quantifiers.

Why universal quantifier. Let us consider the case of n objects 1, . . . , n. We
have some property p(i) which, for each object i, can be true or false. We would

8



like to combine these n truth values into a single one, i.e., we need an n-ary
operation f(a1, . . . , an) that would transform n truth values p(1), . . . , p(n) into
a single combined value f(p(1), . . . , p(n)).

Similarly to the previous chapter, let us consider a fuzzy version. Just like
all non-degenerate binary operations – i.e., operations that are not constants
or unary operations – must contain a product of two numbers, similarly, all
non-degenerate n-ary operations must contain the product of n numbers.

Thus, the simplest possible case – with the fastest computations – is when
the operation is simply the product of the given n numbers, i.e., the operation
f(a1, . . . , an) = a1 · . . . ·an. Indeed, every other operation requires also addition
of subtraction. This operation transforms the values p(1), . . . , p(n) into their
product p(1)·. . .·p(n), that corresponds exactly to the formula p(1) & . . . & p(n),
i.e., to the formula ∀i p(i). This explains the ubiquity of the universal quantifiers.

Why existential quantifier. The universal quantifier has the property that it

does not change if we permute the objects:
n∏

i=1

p(i) =
n∏

i=1

p(π(i)) for every per-

mutation π : {1, . . . , n} → {1, . . . , n}. This condition of permutation invariance
holds for all quantifiers and it is natural to be required. We did not explicitly
impose this condition in our derivation of universal quantifier for only one rea-
son – that we were able to derive this quantifier only from the requirement of
computational simplicity, without a need to also explicitly require permutation
invariance.

However, now that we go from the justification of the simplest possible quan-
tifier to a justification of other quantifiers, we need to explicitly require permu-
tation invariance – otherwise, the next simplest operations are operations like

¬a1 & a2 & a2 . . . & an.

It turns out that among permutation-invariant n-ary logical operations, the
simplest are:

• the operation ¬∀i p(i) for which the corresponding formula 1 −
n∏

i=1

pi re-

quires n− 1 multiplications and one subtraction;

• the operation ∀i¬p(i) for which the corresponding formula
n∏

i=1

(1 − pi)

requires n− 1 multiplications and n subtractions; and

• the operation ∃i p(i), i.e., equivalently, ¬∀i¬p(i), for which the corre-

sponding formula 1−
n∏

i=1

(1− pi) requires n− 1 multiplications and n+ 1

subtractions.

This explains the ubiquity of existential quantifiers.

9



Acknowledgments

This work was supported in part by the US National Science Foundation grants
1623190 (A Model of Change for Preparing a New Generation for Professional
Practice in Computer Science) and HRD-1242122 (Cyber-ShARE Center of Ex-
cellence).

References

[1] R. Belohlavek, J. W. Dauben, and G. J. Klir, Fuzzy Logic and Mathematics:
A Historical Perspective, Oxford University Press, New York, 2017.

[2] I. M. Gelfand and S V. Fomin, Calculus of Variations, Dover Publ., New
York, 2000.

[3] G. Klir and B. Yuan, Fuzzy Sets and Fuzzy Logic, Prentice Hall, Upper
Saddle River, New Jersey, 1995.

[4] J. M. Mendel, Uncertain Rule-Based Fuzzy Systems: Introduction and New
Directions, Springer, Cham, Switzerland, 2017.

[5] H. T. Nguyen, V. Kreinovich, and D. Tolbert, “On robustness of fuzzy log-
ics”, Proceedings of the 1993 IEEE International Conference on Fuzzy Sys-
tems FUZZ-IEEE’93, San Francisco, California, March 1993, Vol. 1, pp. 543–
547.

[6] H. T. Nguyen, C. L. Walker, and E. A. Walker, A First Course in Fuzzy
Logic, Chapman and Hall/CRC, Boca Raton, Florida, 2019.

[7] V. Novák, I. Perfilieva, and J. Močkoř, Mathematical Principles of Fuzzy
Logic, Kluwer, Boston, Dordrecht, 1999.

[8] D. Tolbert, Finding “and” and “or” operations that are least sensitive to
change in intelligent control, University of Texas at El Paso, Department of
Computer Science, Master’s Thesis, 1994.

[9] L. A. Zadeh, “Fuzzy sets”, Information and Control, 1965, Vol. 8, pp. 338–
353.

10


	Fuzzy Logic Explains the Usual Choice of Logical Operations in 2-Valued Logic
	Recommended Citation

	tmp.1578936503.pdf.ztMBL

