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Abstract

In the traditional fuzzy logic, experts’ degrees of confidence are de-
scribed by numbers from the interval [0, 1]. Clearly, not all the numbers
from this interval are needed: in the whole history of the Universe, there
will be only countably many statements and thus, only countably many
possible degree, while the interval [0, 1] is uncountable. It is therefore in-
teresting to analyze what is the set S of actually used values. The answer
depends on the choice of “and”-operations (t-norms) and “or”-operations
(t-conorms). For the simplest pair of min and max, any finite set will do
– as long as it is closed under negation 1 − a. For the next simplest pair
– of algebraic product and algebraic sum – we prove that for a finitely
generated set, if the “and”-operation is exact, then the “or”-operation is
almost always approximate, and vice versa. For other “and”- and “or”-
operations, the situation can be more complex.

1 Formulation of the Problem

Need for fuzzy degrees: a brief reminder. Computers are an important
part of our lives. They help us understand the world, they help us make good
decisions. It is desirable to make sure that these computers possess as much of
our own knowledge as possible.

Some of this knowledge is precise; such a knowledge is relatively easy to
describe in computer-understandable terms. However, a significant part of our
knowledge is described by using imprecise (“fuzzy”) words from natural lan-
guage. For example, to design better self-driving cars, it sounds reasonable to
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ask experienced drivers what they do in different situations, and implement the
corresponding rules in the car’s computer. The problem with this idea is that
expert drivers usually describe their rules by saying something like “If the car
in front of you is close, and it slows down a little bit, then ...”. Here, “close”,
“a little bit”, etc. are imprecise words.

To translate such knowledge into computer-understandable terms, Lotfi Zadeh
invented fuzzy logic, in which each imprecise terms like “close” is described by
assigning, to each possible value x of the corresponding quantity (in this case,
distance), a degree to which x satisfies the property under consideration (in this
case, to what exact, x is close); see, e.g., [3, 6, 11, 14, 15, 19]. In the original for-
mulation of fuzzy logic, the degrees are described by numbers from the interval
[0, 1], so that:

• 1 means that we are absolutely sure about the corresponding statement,

• 0 means that we are sure that this statement is false, and

• intermediate degrees corresponding to intermediate degrees of certainty.

Need for operations on fuzzy degrees, i.e., for fuzzy logic: a brief
reminder. Our rules often use logical connectives like “and” and “or”. In the
above example of the car-related statement, the person used “and” and “if-then”
(implication). Other statements use negation or “or”.

In the ideal world, we should ask each expert to describe his or her degree
of confidence in each such statement – e.g., in the statement that “the car in
front of you is close, and it slows down a little bit”. However, here is a problem:
to describe each property like “close” for distance or “a little bit” for a change
in speed, it is enough to list possible values of one variable. For a statement
about two variables – as above – we already need to consider all possible pairs
of values. So, if we consider N possible values of each variable, we need to ask
the expert N2 questions. If our statement involves three properties – which
often happens – we need to consider N3 possible combinations, etc. With a
reasonably large N , this quickly becomes impossible to ask the expert all these
thousands (and even millions) of questions. So, instead of explicitly asking all
these questions about composite statements like A&B, we need to be able to
estimate the expert’s degree of confidence in such a statement based on his or
her known degrees of confidence a and b in the original statements A and B.

A procedure that transform these degrees a and b into the desired estimate
for the degree of confidence in A&B is known as an “and”-operation (or, for his-
torical reasons, a t-norm). We will denote this procedure by f&(a, b). Similarly,
a procedure corresponding to “or” is called an “or”-operation or a t-conorm;
it will be denoted by f∨(a, b). We can also have negation operations f¬(a),
implication operation f→(a, b), etc.

Simple examples of operations on fuzzy degrees. In his very first paper
on fuzzy logic, Zadeh considered the two simplest possible “and”-operations
min(a, b) and a · b, the simplest negation operation f¬(a) = 1 − a, and the
simplest possible “or”-operations max(a, b) and a + b− a · b.
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It is easy to see that the corresponding “and”- and “or”-operations form
two dual pairs, i.e., pairs for which f∨(a, b) = f¬(f&(f¬(a), f¬(b)) – this reflects
the fact that in our reasoning, a ∨ b is indeed usually equivalent to ¬(¬a&¬b).
Indeed, for example, what does it mean that a dish contains either pork or
alcohol (or both)? It simply means that it is not true that this is an alcohol-free
and pork-free dish.

Both pairs of operations can be derived from the requirement of the smallest
sensitivity to changes in a and b (see, e.g., [13, 14, 18])– which makes sense, since
experts can only mark their degree of confidence with some accuracy, and we
do not want the result of, e.g., “and”-operation drastically change if we replace
the original degree 0.5 with a practically indistinguishable degree 0.51. If we
require that the worst-case change in the result of the operation be as small as
possible, we get min(a, b) and max(a, b). If we require that the mean squares
value of the change be as small as possible, we get a · b and a + b− a · b.

Implication A→ B means that, if we know A and we know that implication
is true, then we can conclude B. In other words, implication is the weakest
of all statements C for which A&C implies B. So, if we know the degrees of
confidence a and b in the statements A and B, then a reasonable definition of the
implication f∨(a, b) is the smallest degree c for which f&(a, c) ≥ b. In this sense,
implication is, in some reasonable sense, an inverse to the “and”-operation.
In particular, when the “and”-operation is multiplication f&(a, b) = a · b, the
implication operation is simply division: f→(a, b) = b/a (if b ≤ a).

Not all values from the interval [0, 1] make sense. While it is reasonable
to use numbers from the interval [0, 1] to describe the corresponding degrees,
the inverse is not true – not every number from the interval [0, 1] makes sense as
a degree. Indeed, whatever degree we use corresponds to some person’s informal
description of his or her degree of confidence. Whatever language we use, there
are only countably many words, while, as is well known, the set of all real
numbers from an interval is uncountable.

Usually, we have a finite set of basic degrees, and everything else is obtained
by applying some logical operations. A natural question is: what can we say
about the resulting – countable – sets of actually used values? This is a general
question to which, in this paper, we provide a partial answer.

Simplest case: min and max. The simplest case if when have f&(a, b) =
min(a, b), f¬(a) = 1− a, and f∨(a, b) = max(a, b). In this case, if we start with
a finite set of degrees a1, . . . , an, then we add their negations 1− a1, . . . , 1− an,
and that, in effect, is it: min(a, b) and max(a, b) do not generate any new values,
they just select one of the two given ones (a or b).

What about a · b and a + b − a · b. What about the next simplest pair of
operations? Since the product is the simplest of the two, let us start with the
product. Again, we start with a finite set of degrees a1, . . . , an. We can also

consider their negations an+1
def
= 1− a1, . . . , an+i

def
= 1− ai, . . . , a2n

def
= 1− an.

If we apply “and”-operation to these values, we get products, i.e., values the
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type
ak1
1 · . . . · a

k2n
2n (1)

for integers ki ≥ 0. If we also allow implication – i.e., in this case, division –
then we get values of the same type (1), but with integers ki being possibly
negative.

The set of all such values is generated based on the original finite set of
values. Thus, we can say that this set is finitely generated.

Every real number can be approximated, with any given accuracy, by a
rational number. Thus, without losing generality, we can assume that all the
values ai are rational numbers – i.e., ratios of two integers.

Since for dual operations, the result of applying the “or”-operation is the
negation of the result of applying the “and”-operation – to negations of a and b
– a natural question is: if we take values of type (1), how many of their negations
are also of the same type? This is a question that we study in this paper.

2 Definitions and the Main Result

Definition 1. By a finitely generated set of fuzzy degrees, we mean a set S of
values of the type (1) from the interval [0, 1], where a1, . . . , an are given rational
numbers, an+i = 1− ai, and k1, . . . , k2n are arbitrary integers.

Examples. If we take n = 1 and a1 = 1/2, then a2 = 1− a1 = 1/2, so all the
values of type (1) are 1/2, 1/4, 1/8, etc. Here, only for one number a1 = 1/2,
the negation 1− a1 belongs to the same set.

If we take a1 = 1/3 and a2 = 2/3, then we have more than one number a
from the set S for which its negation 1− s is also in S:

• we have 1/4 = a21 · a−22 ∈ S for which 1− 1/4 = 3/4 = a1 · a−22 ∈ S; and

• we have 1/9 = a21 ∈ S and 1− 1/9 = 8/9 = a−11 · a32 ∈ S.

Proposition 1. For each finitely generated set S of fuzzy degrees, there are
only finitely many element s ∈ S for which 1− s ∈ S.

Proof is, in effect, contained in [2, 4, 5, 7, 8, 10, 12, 16, 17], where the values
s ∈ S are called S-units and the desired formula s+s′ = 1 for s, s′ ∈ S is known
as the S-unit equation.

Historical comment. The history of this mathematical result is unusual (see,
e.g., [9]): the corresponding problem was first analyzed by Axel Thue in 1909,
it was implicitly proven by Carl Lugwig Siegel in 1929, then another implicit
proof was made by Kurt Mahler in 1933 – but only reasonably recently this
result was explicitly formulated and explicitly proven.

Discussion. Proposition 1 says that for all but finitely many (“almost all”)
values s ∈ S, the negation 1− s is outside the finitely generated set S.
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Since, as we have mentioned, to get an “or”-operation out of “and” requires
negation, this means that while for this set, “and”-operation is exact, the cor-
responding “or”-operation almost always leads us to a value outside S. So, if
we restrict ourselves to the finitely generated set S, we can only represent the
results of “or”-operation approximately.

In other words, if “and” is exact, then “or” is almost always approximate.
Due to duality between “and”- and “or”, we can also conclude that if “or” is
exact, then “and” is almost always approximate.

Computational aspects. The formulation of our main result sounds like (too)
abstract mathematics: there exists finitely many such values s; but how can we
find them? Interesting, there exists a reasonably efficient algorithms for finding
such values; see, e.g., [1].

Relation to probabilities. Our current interest is in fuzzy logic, but it should
be mentioned that a similar results holds for the case of probabilistic uncertainty,
when, instead of degrees of confidence, we consider possible probability values
ai. In this case:

• if an event has probability a, then its negation has probability 1− a;

• if two independent events have probabilities a and b, then the probably
that both events will happen is a · b; and

• if an event B is a particular case of an event A, then the conditional
probability P (B |A) is equal to b/a.

Thus, in the case of probabilistic uncertainty, it also makes sense to consider
multiplication and division operations – and thus, to consider sets which are
closed under these operations.

3 How General Is This Result?

Formulation of the problem. In the previous section, we considered the case
when f&(a, b) = a · b and f¬(a) = 1 − a. What if we consider another pair of
operations, will the result still be true?

For example, is it true for Archimedean “and”-operations?

Analysis of the problem. It is known that every Archimedean “and”-operation
is equivalent to f&(a, b) = a · b – namely, we can reduce it to the product by
applying an appropriate strictly increasing re-scaling r : [0, 1]→ [0, 1]; see, e.g.,
[6, 14].

Thus, without losing generality, we can assume that the “and”-operation is
exactly the product f&(a, b) = a · b, but the negation operation may be different
– as long as f¬(f¬(a)) = a for all a.

Result of this section. It turns out that there are some negation operations
for which the above result does not hold.
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Proposition 2. For each finitely generated set S – with the only exception of
the set generated by a single value 1/2 – there exists a negation operation f¬(a)
for which, for infinitely many s ∈ S, we have f¬(s) ∈ S.

Proof. When at least one of the original values ai is different from 1/2, this
means that the fractions ai and 1 − ai have different combinations of prime
numbers in their numerators and denominators. In this case, for every ε > 0,
there exists a number s ∈ S for which 1− ε < s < 1.

We know that one of the original values ai is different from 1/2. Without
losing generality, let us assume that this value is 1/2. If a1 > 1/2, then 1−a1 <
1/2. So, again without losing any generality, we can assume that a1 < 1/2.

Let us now define two monotonic sequences pn and qn. For the first sequence,
we take the values

p0 = 1/2 > p1 = a1 > p2 = a21 > p3 = a31 > . . .

The second sequence is defined iteratively:

• As q0, we take q0 = 1/2.

• As q1, let us select some number (smaller than 1) from the set S which is
greater than or equal to 1− p1.

• Once the values q1, . . . , qk have been selected, we select, as qk+1, a number
(smaller than 1) from the set S which is larger than qk and larger than
1− pk+1, etc.

For values s ≤ 0.5, we can then define the negation operation as follows:

• for each k, we have f¬(pk) = qk and

• it is linear for pk+1 < s < pk, i.e.

f¬(s) = qk+1 + (s− pk+1) · qk+1 − qk
pk+1 − p− k

.

The resulting function maps the interval [0, 0.5] to the interval [0.5, 1]. For
values s ≥ 0.5, we can define f¬(a) as the inverse function to this.

4 What If We Allow Unlimited Number of “And”-
Operations and Negations: Case Study

Formulation of the problem. In the previous sections, we allowed an unlim-
ited application of “and”-operation and implication. What if instead, we allow
an unlimited application of “and”-operation and negation?

Here is our related result.

Proposition 3. The set S of degrees that can be obtained from 0, 1/2, and
1 by using “and”-operation f&(a, b) = a · b and negation f¬(a) = 1 − a is the
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set of all binary-rational numbers, i.e., all numbers of the type p/2k for natural
numbers p and k for which p ≤ 2k.

Proof. Clearly, the product of two binary-rational numbers is binary-rational,
and 1 minus a binary-rational number is also a binary-rational number. So, all
elements of the set S are binary-rational.

To complete the proof, we need to show that every binary-rational number
p/2k belongs to the set S, i.e., can be obtained from 1/2 by using multiplication
and 1− a. We will prove this result by induction over k.

For k = 1, this means that 0, 1/2, and 1 belong to the set S – and this is
clearly true, since S consists of all numbers that can be obtained from these
three, these three numbers included.

Let us assume that this property is proved for k. Then, for p ≤ 2k, each
element p/2k+1 is equal to the product (1/2) · (p/2k) of two numbers from the
set S and thus, also belongs to S. For p > 2k, we have

p/2k+1 = 1− (2k+1 − p)/2k+1.

Since p > 2k, we have 2k+1 − p < 2k and thus, as we have just proved,
(2k+1− p)/2k+1 ∈ S. So, the ratio p/2k+1 is obtained by applying the negation
operation to a number from the set S and is, therefore, itself an element of the
set S.

The induction step is proven, and so is the proposition.

Comment. If we also allow implication f&(a, b) = b/a, then we will get all
possible rational numbers p/q from the interval [0, 1]. Indeed, if we pick k for
which q < 2k, then for a = q/2k and b = p/2k, we get b/a = p/q.
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